Le Minh Tri (TU Wien, Austria): Determining functions via their descent modulus

Vineri, 12 aprilie, ora 10, în cadrul colectivului de Geometrie va avea loc prelegerea invitată cu titlul:

Determining functions via their descent modulus

susținută de Le Minh Tri (TU Wien, Austria).

Prelegerea va avea loc online, folosind Microsoft Teams. Linkul de acces este: https://teams.microsoft.com/l/meetup-join/19%3ad5b8995cf0d54b8180ee9f6a1c1adb6e%40thread.tacv2/1711768359085?context=%7b%22Tid%22%3a%225a4863ed-40c8-4fd5-8298-fbfdb7f13095%22%2c%22Oid%22%3a%222ee884ac-4879-4097-b762-4c6dce4c0a5a%22%7d

Alternativ, se poate folosi:

Meeting ID: 363 699 728 340
Passcode: TGkds5

Abstract: It was established in [1] that Lipschitz inf-compact functions are uniquely determined by their local slope and critical values. Compactness played a paramount role in this result, particularly ensuring the existence of critical points. In this talk, we establish a determination result for merely bounded from below functions in complete metric spaces, by adding an assumption controlling the asymptotic behavior. This assumption is trivially fulfilled if a function is inf-compact. Additionally, our result is valid for a wide range of descent moduli including the (De Giorgi) local slope, global slope and average descent operators.

[1] A. Daniilidis and D. Salas, A determination theorem in terms of the metric slope, Proc. Amer. Math. Soc. 150 (2022), 4325–4333.

[2] A. Daniilidis, T. M. Le and D. Salas, Metric compatibility and determination in complete metric spaces, arXiv:2308.14877.