Advanced Mathematics Programme Profile
Educational Programme  Advanced Mathematics 
Degree Awarded  Master in Advanced Mathematics (English) 
Standard Length of Studies (Number of ECTS Credits)  2 years – 4 semesters – 120 ECTS 
Type of Study  Fulltime 
Higher Education Institution  BabeşBolyai University ClujNapoca, Romania 
Faculty / Department  Faculty of Mathematics and Computer Science 
Contact Person  Professor Radu Precup 
Phone  0264405300 
Fax  0264591906 
r.precup@math.ubbcluj.ro  
Website  http://www.cs.ubbcluj.ro 
Profile of the Degree Programme  Mathematics 
Target Group / Addressees  Graduates in Mathematics, Informatics, Physics, Chemistry, Biology, Economics and Engineering. 
Entrance Conditions  Graduate student recruitment is achieved by competition. The overall three/fouryear undergraduate average grade and a personal portfolio, for candidates with a Bachelor Degree in Mathematics, Computer Science, Computer Mathematics, Physics Mathematics or Economical Computer Science and respectively the grade of a written test (see the curricula here) and a personal portfolio, for candidates outside the above mentioned areas. 
Further Education Possibilities  Doctoral and postdoctoral studies; Continuous selfeducation and study. 
Description of Study  Advanced mathematics focuses on the study and creation of mathematical and computational tools broadly applicable in science and engineering, and on their use in solving challenging problems in these and related fields.
From ecological modeling to mechanics, from statistical analysis to mathematical economics, areas of investigation are diverse. This master’s program offers advanced theoretical knowledge in this complex and dynamic domain. Core compulsory courses: Qualitative theory of ordinary differential equations; Group theory and applications; Mathematical methods in fluid mechanics; Methodology of the mathematical research; Nonlinear partial differential equations; Techniques of function approximation; Rings and modules; Applied nonlinear analysis; Complex analysis in on and higher dimensions; Algebraic topology; Homological algebra. Core optional courses: Geometric function theory in several complex variables; Potential theory and elliptic boundary value problems; Aspects of critical point theory; Fixed point theory for multivalued operators; Reactiondiffusion systems; Periodic solutions of differential systems; Modules and abelian categories; Morse Theory; Representations of groups and algebras; Category theory. 
Purposes of the Programme  The program was created to respond to the demand of specialists in pure and applied mathematics, treating not only theoretical problems, but also doing mathematical modeling for various domains of science, economy and industry. 
Specialization / Area of Expertise  Experts in the main fundamental structures of Mathematics from Algebra, Analysis and Geometry/Topology, as well as in studying different applicative problems from Differential Equations, Mechanics and Approximation Theory. Mathematical modeling and mathematical interdisciplinary approaches are also in our target. 
Extra Peculiarities  Optional: Practice of Education 
Practical Training  Participation in a research project during the last semester. 
Final Examinations  Research thesis 
Gained Abilities and Skills 

Job Placement, Potential Field of Professional Activity  Mathematicians and experts in mathematical modeling in: research, academic and educational institutes, financial system, industry and production companies. 