Feasibility of using machine learning algorithms for yield prediction of corn and sunflower crops based on seeding date
Abstract
In this research, our objective is to identify the relationship between the date of seeding and the production of corn and sunflower crops. We evaluated the feasibility of using prediction models on a dataset of annual average crop yields and information on plant phenology, from several states of the US. After performing data analysis and preprocessing, we trained a selection of regression models. The best results were obtained for corn using HistGradientRegressor and XGBRegressor with R^2=0.969 for both algorithms and MAE % = 8.945%, respectively MAE% = 9.423%. These results demonstrate a good potential for the problem of yield prediction based on year, state, average plating day, and crop type. This model will be further used, combined with meteorological data, to build an agricultural crop prediction model.
References
[2] Ali, W., Ali, M., Ahmad, Z., Iqbal, J., Anwar, S., and Kamal, M. K. A. Influence of sowing dates on varying maize (zea mays l.) varieties grown under agro-climatic condition of peshawar, pakistan. European Journal of Experimental Biology 8, 6 (2018),
36.
[3] Arora, N. K. Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability 2 (2019), 95–96.
[4] Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., and Bochtis, D. Machine learning in agriculture: A comprehensive updated review. Sensors 21, 11 (2021), 3758.
[5] Cerioli, T., Gentimis, T., Linscombe, S. D., and Famoso, A. N. Effect of rice planting date and optimal planting window for southwest Louisiana. Agronomy Journal 113, 2 (2021), 1248–1257.
[6] Chen, T., and Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (New York, NY, USA, 2016), KDD ’16, Association for Computing Machinery, p. 785–794.
[7] Chlingaryan, A., Sukkarieh, S., and Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and electronics in agriculture 151 (2018), 61–69.
[8] Desai, A., and Chaudhary, S. Distributed decision tree. In Proceedings of the 9th Annual ACM India Conference (2016), pp. 43–50.
[9] Deshmukh, M., Jaiswar, A., Joshi, O., and Shedge, R. Farming assistance for soil fertility improvement and crop prediction using xgboost. In ITM Web of Conferences (2022), vol. 44, EDP Sciences, p. 03022.
[10] Feng, P., Wang, B., Li Liu, D., Waters, C., Xiao, D., Shi, L., and Yu, Q. Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agricultural and Forest Meteorology 285 (2020), 107922.
[11] Geurts, P., Wehenkel, L., and d’Alch´e Buc, F. Gradient boosting for kernelized output spaces. In Proceedings of the 24th international conference on Machine learning (2007), pp. 289–296.
[12] Giannini, V., Mula, L., Carta, M., Patteri, G., and Roggero, P. P. Interplay of irrigation strategies and sowing dates on sunflower yield in semi-arid Mediterranean areas. Agricultural Water Management 260 (2022), 107287.
[13] Gonzalez-Sanchez, A., Frausto-Solis, J., and Ojeda-Bustamante, W. Predictive ability of machine learning methods for massive crop yield prediction. Spanish Journal of Agricultural Research 12, 2 (2014), 313–328.
[14] Hsu, C.-C., Lee, Y.-C., Lu, P.-E., Lu, S.-S., Lai, H.-T., Huang, C.-C., Wang, C., Lin, Y.-J., and Su, W.-T. Social media prediction based on residual learning and random forest. In Proceedings of the 25th ACM international conference on Multimedia (2017), pp. 1865–1870.
[15] Lv, Z., Li, F., and Lu, G. Adjusting sowing date and cultivar shift improve maize adaption to climate change in china. Mitigation and Adaptation Strategies for Global Change 25, 1 (2020), 87–106.
[16] Ma, B., Zhao, H., Zheng, Z., Caldwell, C., Mills, A., Vanasse, A., Earl, H., Scott, P., and Smith, D. Optimizing seeding dates and rates for canola production in the humid eastern canadian agroecosystems. Agronomy Journal 108, 5 (2016), 1869–1879.
[17] Malhi, G. S., Kaur, M., and Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 13, 3 (2021), 1318.
[18] Marcinkowski, P., and Piniewski, M. Effect of climate change on sowing and harvest dates of spring barley and maize in poland. International Agrophysics 32, 2 (2018).
[19] Maresma, A., Ballesta, A., Santiveri, F., and Lloveras, J. Sowing date affects maize development and yield in irrigated mediterranean environments. Agriculture 9, 3 (2019), 67.
[20] Mourtzinis, S., Esker, P. D., Specht, J. E., and Conley, S. P. Advancing agricultural research using machine learning algorithms. Scientific reports 11, 1 (2021), 1–7.
[21] Mourtzinis, S., Specht, J. E., and Conley, S. P. Defining optimal soybean sowing dates across the us. Scientific Reports 9, 1 (2019), 1–7.
[22] Pan, B. Application of xgboost algorithm in hourly pm2. 5 concentration prediction. In IOP conference series: earth and environmental science (2018), vol. 113, IOP publishing, p. 012127.
[23] Partal, E. Sunflower yield and quality under the influence of sowing date, plant population and the hybrid. ROMANIAN AGRICULTURAL RESEARCH 39 (2022), 463–470.
[24] Patel, A., Patel, M., Patel, R., Mote, B., et al. Effect of different sowing date on phenology, growth and yield of rice–a review. Plant Archives 19, 1 (2019), 12–16.
[25] Reed, H. K., Karsten, H. D., Curran, W. S., Tooker, J. F., and Duiker, S. W. Planting green effects on corn and soybean production. Agronomy Journal 111, 5 (2019), 2314–2325.
[26] Saddique, Q., Cai, H., Ishaque, W., Chen, H., Chau, H. W., Chattha, M. U., Hassan, M. U., Khan, M. I., and He, J. Optimizing the sowing date and irrigation strategy to improve maize yield by using ceres (crop estimation through resource and environment synthesis)-maize model. Agronomy 9, 2 (2019), 109.
[27] Sadigov, R. Rapid growth of the world population and its socioeconomic results. The Scientific World Journal 2022:8110229 (2022).
[28] Shankar, P., Werner, N., Selinger, S., and Janssen, O. Artificial intelligence driven crop protection optimization for sustainable agriculture. In 2020 IEEE/ITU International Conference on Artificial Intelligence for Good (AI4G) (2020), IEEE, pp. 1–6.
[29] Tariq, M., Ahmad, S., Fahad, S., Abbas, G., Hussain, S., Fatima, Z., Nasim, W., Mubeen, M., ur Rehman, M. H., Khan, M. A., et al. The impact of climate warming and crop management on phenology of sunflower-based cropping systems in Punjab, Pakistan. Agricultural and Forest Meteorology 256 (2018), 270–282.
[30] Tian, B., Zhu, J., Nie, Y., Xu, C., Meng, Q., and Wang, P. Mitigating heat and chilling stress by adjusting the sowing date of maize in the north China plain. Journal of Agronomy and Crop Science 205, 1 (2019), 77–87.
[31] United States Department of Agriculture, U. National agricultural statistics service. https://quickstats.nass.usda.gov/. Accessed: 2022-10-17
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When the article is accepted for publication, I, as the author and representative of the coauthors, hereby agree to transfer to Studia Universitatis Babes-Bolyai, Series Informatica, all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author specifically retain: the right to make further copies of all or part of the published article for my use in classroom teaching; the right to reuse all or part of this material in a review or in a textbook of which I am the author; the right to make copies of the published work for internal distribution within the institution that employs me.