Retinal Blood Vessel Segmentation on Style-augmented Images
Abstract
The average human lifespan increased dramatically in the second half of 20th century. It was mainly due to technological improvements, which were driven by the continuous war preparations, and while humans have got another 20 years to live, unfortunately there are some sad side effects added to the elderly life. Various diseases can attack the eye, our major organ responsible for receiving information, therefore many researches were devoted to examine these diseases, their early signs, and how could they be stopped. From the start of 21th century, methods aided by computer were more and more involved in these processes, up to the current trend of using Convolutional Neural Networks (CNNs). While supervised methods, CNNs do achieve accuracy which can be compared to a skilled ophtalmologist, they require a tremendous amount of labeled data which is sparse in medical fields because the amount of time and resources needed to create them. One natural solution is to augment the data present, that is, copying the distribution while adding a small variety, like coloring an image differently. That is, what our paper aims to explore, whether a texturing algorithm, the Neural Style Transfery can be used to make a data set richer, and therefore helping a classifier CNN to achieve better results.
References
[2] Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on medical imaging 8, 3 (1989), 263–269.
[3] Drive: Digital retinal images for vessel extraction. https://drive.grand-challenge.org/.
[4] Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A. R., Owen, C. G., and Barman, S. A. Blood vessel segmentation methodologies in retinal images–a survey. Computer methods and programs in biomedicine 108, 1 (2012), 407–
433.
[5] Gatys, L. A., Ecker, A. S., and Bethge, M. A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015).
[6] Gatys, L. A., Ecker, A. S., and Bethge, M. Image style transfer using convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 2414–2423.
[7] Gatys, L. A., Ecker, A. S., Bethge, M., Hertzmann, A., and Shechtman, E. Controlling perceptual factors in neural style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 3985–3993.
[8] Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., and Song, M. Neural style transfer: A review. IEEE transactions on visualization and computer graphics (2019).
[9] Johnson, J., Alahi, A., and Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In European conference on computer vision (2016), Springer, pp. 694–711.
[10] Li, Y., Wang, N., Liu, J., and Hou, X. Demystifying neural style transfer. arXiv preprint arXiv:1701.01036 (2017).
[11] Mar´ın, D., Aquino, A., Gegundez-Arias, M. E., and Bravo, J. M. ´ A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Transactions on medical imaging 30, 1 (2010), 146–158.
[12] Nguyen, U. T., Bhuiyan, A., Park, L. A., and Ramamohanarao, K. An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern recognition 46, 3 (2013), 703–715.
[13] Ny´ıri, T., and Kiss, A. Style transfer for dermatological data augmentation. In Proceedings of SAI Intelligent Systems Conference (2019), Springer, pp. 915–923.
[14] Orobix: Retina u-net. https://github.com/orobix/retina-unet.
[15] Risser, E., Wilmot, P., and Barnes, C. Stable and controllable neural texture synthesis and style transfer using histogram losses. arXiv preprint arXiv:1701.08893 (2017).
[16] Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (2015), Springer, pp. 234–241.
[17] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[18] Wang, C., Zhao, Z., Ren, Q., Xu, Y., and Yu, Y. Dense u-net based on patch-based learning for retinal vessel segmentation. Entropy 21, 2 (2019), 168.
[19] Zhang, B., Zhang, L., Zhang, L., and Karray, F. Retinal vessel extraction by matched filter with first-order derivative of gaussian. Computers in biology and medicine 40, 4 (2010), 438–445.
[20] Zheng, X., Chalasani, T., Ghosal, K., Lutz, S., and Smolic, A. Stada: Style transfer as data augmentation. arXiv preprint arXiv:1909.01056 (2019)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When the article is accepted for publication, I, as the author and representative of the coauthors, hereby agree to transfer to Studia Universitatis Babes-Bolyai, Series Informatica, all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author specifically retain: the right to make further copies of all or part of the published article for my use in classroom teaching; the right to reuse all or part of this material in a review or in a textbook of which I am the author; the right to make copies of the published work for internal distribution within the institution that employs me.