Evolutionary curriculum learning approach for transferable cellular automata rule optimization (2020)

This paper proposes a novel method for supervised optimization of cellular automata rules using curriculum learning. The optimized edge detector manages to generalize a rule from synthetic data that is applicable to magnetic resonance images, removing the need for manual annotation of medical data. The method achieves competitive results with classical edge detectors on…

A Transfer Learning Approach on the Optimization of Edge Detectors for Medical Images Using Particle Swarm Optimization (2021)

Edge detection is a fundamental image analysis task, as it provides insight on the content of an image. There are weaknesses in some of the edge detectors developed until now, such as disconnected edges, the impossibility to detect branching edges, or the need for a ground truth that is not always accessible. Therefore, a…