A Nash equilibria decision tree for binary classification (2024)

Applied intelligence (Boston) Authors M. Suciu, R. Lung Abstract Decision trees rank among the most popular and efficient classification methods. They are used to represent rules for recursively partitioning the data space into regions from which reliable predictions regarding classes can be made. These regions are usually delimited by axis-parallel or oblique hyperplanes. Axis-parallel…

A game theoretic decision forest for feature selection and classification (2024)

Logic Journal of the IGPL Authors M. Suciu, R. Lung Abstract Classification and feature selection are two of the most intertwined problems in machine learning. Decision trees (DTs) are straightforward models that address these problems offering also the advantage of explainability. However, solutions that are based on them are either tailored for the problem…

Identification of influential nodes with Shapley Influence Maximization Extremal Optimization algorithm (2023)

Applied Soft Computing Authors Noémi Gaskó, Tamás Képes, R. Lung, M. Suciu Abstract The Influence Maximization Problem is a challenging computational task with multiple real-world applications. A new approach to this problem based on cooperative game theory and optimization called the Shapley Influence Maximization Extremal Optimization approach is proposed. The influence maximization problem for the independent…