The first Zolotarev case in the Erdös-Szegö solution to a Markov-type extremal problem of Schur
DOI:
https://doi.org/10.24193/subbmath.2017.2.02Keywords:
Chebyshev, derivative, Erdös, extremal problem, inequality, Markov, polynomial, quartic, Schur, Shadrin, Szegö, ZolotarevAbstract
References
Achieser, N. I., Theory of Approximation, Dover Publications, Mineola N.Y., 2003 (Russian 1947).
Collins, G. E., Application of quantifier elimination to Solotareff´s approximation problem, in Stability Theory: Hurwitz Centenary Conference, (R. Jeltsch et al., eds.), Ascona 1995, Birkhäuser Verlag, Basel, 1996 (ISNM 121), 181-190.
Erdös, P., Szegö, G., On a problem of I. Schur, Ann. Math. 43 (1942), 451-470.
Finch, S. R., Zolotarev-Schur Constant, in Finch, S. R., Mathematical Constants, Cambridge University Press, Cambridge (UK), 2003, 229-231.
Grasegger, G., Vo, N. Th., An algebraic-geometric method for computing Zolotarev polynomials, Technical report no. 16-02, RISC Report Series, Johannes Kepler University, Linz, Austria, 2016, 1-17.
Lazard, D., Solving Kaltofen’s challenge on Zolotarev’s approximation problem, in Proceedings of International Symposium on Symbolic and Algebraic Computation (ISSAC), (J.-G. Dumas, ed.), Genova 2006, ACM, New York, 2006, 196-203.
Malyshev, V. A., The Abel equation, St. Petersburg Math. J. 13 (2002), 893-938 (Russian 2001).
Markov, A. A., On a question of D. I. Mendeleev, Zapiski. Imper. Akad. Nauk., St. Petersburg, 62 (1889), 1-24 (Russian). www.math.technion.ac.il/hat/fpapers/mar1.pdf
Markov, V. A., On functions deviating least from zero, Izdat. Akad. Nauk., St. Petersburg, 1892, iv + 111 (Russian). www.math.technion.ac.il/hat/fpapers/vmar.pdf
Milovanović, G. V., Mitrinović, D. S., Rassias, Th. M., Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
Peherstorfer, F., Schiefermayr, K., Description of extremal polynomials on several intervals and their computation. II, Acta Math. Hungar. 83 (1999), 59-83.
Rack, H.-J., On polynomials with largest coefficient sums, J. Approx. Theory 56 (1989), 348-359.
Rivlin, Th. J., Chebyshev Polynomials, 2nd ed., Wiley, New York, 1990.
Schur, I., Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall, Math. Z. 4 (1919), 271-287.
Shadrin, A., Twelve proofs of the Markov inequality, in Approximation Theory: A volume dedicated to Borislav Bojanov, (D. K. Dimitrov et al., eds.), M. Drinov Acad. Publ. House, Sofia, 2004, 233-298.
Shadrin, A., The Landau-Kolmogorov inequality revisited, Discrete Contin. Dyn. Syst. 34 (2014), 1183-1210.
Todd, J., A legacy from E. I. Zolotarev (1847-1878), Math. Intell. 10 (1988), 50-53.
Vlček, M., Unbehauen, R., Zolotarev polynomials and optimal FIR filters, IEEE Trans. Signal Process. 47 (1999), 717-730. Corrections: IEEE Trans. Signal Process. 48 (2000), 2171.
Downloads
Additional Files
- The first Zolotarev case
- (#112) "The first Zolotarev case..." see file-name
- Rev.2016-09-06.Rack.112.The first Zolotarev case in the Erdös-Szegö solution to a Markov-type extremal problen of Schur.pdf
- The first Zolotarev case in the Erdös-Szegö solution etc. (revised)
- The first Zolotarev case in the Erdös-Szegö solution etc. (revised)
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.