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The first Zolotarev case in the Erdös-Szegö
solution to a Markov-type extremal problem
of Schur

Heinz-Joachim Rack

Abstract. Schur’s [14] Markov-type extremal problem asks to find the

maximum (1) sup
−1≤ξ≤1

sup
Pn∈Bn,ξ,2

|P (1)
n (ξ)|, where Bn,ξ,2 = {Pn ∈ Bn :

P
(2)
n (ξ) = 0} ⊂ Bn = {Pn : |Pn(x)| ≤ 1 for |x| ≤ 1} and Pn is an

algebraic polynomial of degree ≤ n. Erdös and Szegö [3] found that
for n ≥ 4 this maximum is attained if ξ = ±1 and Pn ∈ Bn,ξ,2 is a
(unspecified) member of the 1-parameter family of hard-core Zolotarev
polynomials Zn,t. Our first result centers around the proof in [3] for the
initial case n = 4 and is three-fold: (i) the numerical value for (1) in
([3], (7.9)) is not correct, but sufficiently precise; (ii) from preliminary
work in [3] can in fact be deduced a closed analytic expression for (1)
if n = 4, allowing numerical evaluation to any precision; (iii) even the
explicit power form representation of an extremal Z4,t = Z4,t∗ can be
deduced from [3], thus providing an exemplification of Schur’s problem
that seems to be novel. Additionally, we cross-check its validity twice:
firstly by deriving Z4,t∗ conversely from a general formula for Z4,t that
we have given in [12], and secondly by applying Theorem 5.10 in [11].
We then turn to a generalized solution of Schur’s problem, to k -th
derivatives, by Shadrin [16]. Again we provide in explicit form the cor-
responding maximum as well as an extremizer polynomial for the first
non-trivial degree n = 4.
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1. Introduction

The famous A. A. Markov inequality of 1889 [8] asserts an estimate on the
size of the first derivative of an algebraic polynomial Pn of degree ≤ n and
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can be restated as follows:

sup
ξ∈I

sup
Pn∈Bn

|P (1)
n (ξ)| = n2 = T (1)

n (1), (1.1)

where I = [−1, 1] and Bn = {Pn : |Pn(x)| ≤ 1 for x ∈ I}. As indicated,
this maximum will be attained if, up to the sign, Pn = Tn ∈ Bn is the n-th
Chebyshev polynomial of the first kind on I (defined by Tn(x) = 2xTn−1(x)−
Tn−2(x) with T1(x) = x, T0(x) = 1) and if ξ = ±1, see e.g. ([10], p. 529),
([13], p. 123).

In 1919 I. Schur ([14], §2), inspired by (1.1), was led to the problem of

finding the maximum of |P (1)
n (ξ)| under the additional restriction P

(2)
n (ξ) = 0:

Determine Pn = P ∗n which attains, for n ≥ 3,

sup
ξ∈I

sup
Pn∈Bn,ξ,2

|P (1)
n (ξ)| = n2Mn, (1.2)

where Bn,ξ,2 = {Pn ∈ Bn : P
(2)
n (ξ) = 0} and Mn is a constant (depending on

n). Schur ([14], (9)) proved that there holds

sup
ξ∈I

sup
Pn∈Bn,ξ,2

|P (1)
n (ξ)| < 1

2
n2, so that Mn <

1

2
. (1.3)

In 1942 P. Erdös and G. Szegö addressed this problem of Schur and they
provided the following solution ([3], Theorem 2):

The maximum (1.2) will be attained, for n ≥ 4, only if ξ = 1 and
Pn = P ∗n is a (unspecified) member of the 1-parameter family (with parameter
t) of hard-core Zolotarev polynomials ±Zn,t; or if ξ = −1 and Pn = P ∗n is a
(unspecified) member of the family ±Z−n,t, where Z−n,t(x) = Zn,t(−x).

We leave aside the simple case n = 3 (with solution ξ = 0 and
P3 = P ∗3 = ±T3 ([3], p. 466)). Henceforth we will confine ourselves to specify
only one extremal polynomial P ∗n for a given problem on I, but will keep in
mind that −P ∗n as well as ±Q∗n, where ±Q∗n(x) = ±P ∗n(−x), may likewise be
extremal. The solutions to (1.1) and (1.2) have in common that the maxi-
mum is attained at the endpoints ξ = ±1 of the unit interval I. But, on the
other hand, the solutions differ greatly when it comes to exhibit an explicit
extremal polynomial from Bn resp. Bn,ξ,2: Whereas in (1.1) an extremizer
is, for all n ≥ 1, the well-known n -th Chebyshev polynomial Tn [13], the
explicit power form of the intricate extremizers Zn,t in (1.2) remained arcane
for all n ≥ 4. This is due to the fact that for a general degree n the explicit
power form of a hard-core Zolotarev polynomial Zn,t is not known ([16], p.
1185). Rather, Zn,t can be expressed with the aid of elliptic functions (see
([1], pp. 280), ([10], p. 407), [18]) which amounts to an extremely complicated
concoction of elliptic quantities ([17], p. 52).
It is a purpose of this note to provide, nearly one hundred years after the
origin of Schur’s problem, the explicit power form of a particular hard-core
Zolotarev polynomial Zn,t = Zn,t∗ which is extremal for (1.2), at least for
the first nontrivial case n = 4. Such a solution was coined Schur polynomial
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in ([11], Section 5d), where a numerical method (solution of a system of non-
linear equations) is advised in order to determine it.
We will first tackle the explicit analytic expression for (1.2) if n = 4. Once
it has been established, to calculate its numerical value to arbitrary preci-
sion becomes immediate. Incidentally, we notice that the numerical value for
16M4 as given in ([3], (7.9)) is not correct from the third decimal place on. We
then deduce, in three alternative fashions, an extremal hard-core Zolotarev
polynomial P ∗4 = Z4,t∗ with optimal value t∗ of the parameter t. This Schur
polynomial P ∗4 may well serve as illustrative example of the result in ([3],
Theorem 2). Finally, we will consider a recent generalization of Schur’s prob-
lem (1.2), due to A. Shadrin [16], to higher derivatives of Pn, and again we
will exemplify the quartic case n = 4.

2. Analytical and numerical value of the maximum in the
quartic case

To determine the value in (1.2) for n = 4 we rely on preliminary work in ([3],
Section 7) and will therefore retain, for the reader’s convenience, the notation
used there. A sought-for extremal hard-core Zolotarev polynomial P ∗4 which
solves (1.2) can be assumed to be from class B4,1,2 and be represented as,
see ([3], (7.3)),

P ∗4 (x) = 1− λ(1− x)(B4 − x)(y1 − x)2, (2.1)

where λ,B4, y1 are parameters which reflect properties of P ∗4 , such as:

P ∗4 (−1) = −1, P ∗4 (y1) = 1, P
∗(1)
4 (y1) = 0, P ∗4 (1) = P ∗4 (B4) = 1. The first

and second derivative of P ∗4 at x = 1 read:

P
∗(1)
4 (1) = λ(B4−1)(1−y1)2 and P

∗(2)
4 (1) = 2λ(y1−1)(2(1−B4)−(y1−1)),

(2.2)

so that the condition P
∗(2)
4 (1) = 0 yields y1 = 3 − 2B4 which, when in-

serted into P
∗(1)
4 (1), eliminates there the parameter y1. From P ∗4 (−1) = −1

one deduces, upon inserting the said value of y1, that λ = 1
(B4+1)(4−2B4)2

,

see (2.1). This implies P
∗(1)
4 (1) = (B4−1)3

(B4−2)2(B4+1) . The identity 2
B4−1 =

11−
√

33 + 2
√

5(5 +
√

33)

8
, which is given in an equivalent form in ([3],

(7.8)), allows to evaluate B4 (see (3.2) below). Inserting this value of B4

into the preceding expression for P
∗(1)
4 (1) eventually yields the analytical ex-

pression for the maximum, which can be evaluated numerically to any desired
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precision:

P
∗(1)
4 (1) = supξ∈I supP4∈B4,ξ,2

∣∣∣P (1)
4 (ξ)

∣∣∣ = 16M4

=
−561 + 161

√
33 +

√
30(15215 + 3329

√
33)

288

= 4.7876468942...,

(2.3)

being a root of P4(x) = −65536− 39424x− 1915x2 + 1683x3 + 216x4.

By contrast, Formula (7.9) in [3] states that

P
∗(1)
4 (1) = 4.7881... (2.4)

holds, a value which is now seen to be biased in the third and fourth decimal
place.
But that bias does not harm the argument in [3] for n = 4 since the first
two valid decimal places are sufficiently conclusive for P ∗4 to be the extremal
element (as a comparison is drawn with competitor polynomial T4 and value∣∣∣T (1)

4

(
1√
6

)∣∣∣ = 4.3546... , see ([3], (7.2))).

The constant M4 itself can thus be represented as

M4 =
P

∗(1)
4 (1)
16 = supξ∈I supP4∈B4,ξ,2

∣∣∣P (1)
4 (ξ)

∣∣∣
42

=
−561 + 161

√
33 +

√
30(15215 + 3329

√
33)

4608

= 0.2992279308... .

(2.5)

We note that according to ([3], (1.3), (1.4)) there holds lim
n→∞

Mn =

0.3124... . Schur ([14], p. 277) had obtained the weaker result 0.217... ≤
lim sup

n→∞
Mn ≤ 0.465... .

3. Explicit power form representation of an extremal
hard-core Zolotarev polynomial in the quartic case

Having expressed the parameters λ = λ(B4) and y1 = y1(B4) as functions
of B4 alone and knowing the value of the constant B4, it is possible to even
retrieve the explicit power form of an extremal P ∗4 . In fact, according to the
preceding Section we have

P ∗4 (x) = 1− λ(1− x)(B4 − x)(y1 − x)2

= 1− (1− x)(B4 − x)(3− 2B4 − x)2

(B4 + 1)(4− 2B4)2

(3.1)
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Inserting now

B4 =
177− 17

√
33 +

√
30(527 + 97

√
33)

144

= 1.8034303689...

(3.2)

and expanding (3.1) leads us, after some algebraic manipulations, to the
explicit power form representation of an extremal quartic hard-core Zolotarev

polynomial P ∗4 with P ∗4 (x) =
4∑
i=0

a∗i x
i and with coefficients

a∗0 =
21297− 2081

√
33−

√
30(3160847 + 628577

√
33)

9216
= −0.5328330303...

a∗1 =
291− 1139

√
33−

√
30(−1236313 + 427337

√
33)

4608
= −2.6688925571...

a∗2 =
−849 + 161

√
33 +

√
30(15215 + 3329

√
33)

384
= 2.8407351706...

a∗3 =
4317 + 1139

√
33 +

√
30(−1236313 + 427337

√
33)

4608
= 3.6688925571...

a∗4 =
−921− 1783

√
33−

√
330(−59555 + 64243

√
33)

9216
= −2.3079021403... .

(3.3)
These optimal coefficients a∗i are roots of the following respective quartic
polynomials P4,i with integer coefficients:

P4,0(x) = −7951932− 7463259x+ 11697424x2 − 4089024x3 + 442368x4

P4,1(x) = 12221 + 273251x− 7120x2 − 3492x3 + 13824x4

P4,2(x) = −236196− 112023x+ 17720x2 + 13584x3 + 1536x4

P4,3(x) = 288684− 303831x+ 65348x2 − 51804x3 + 13824x4

P4,4(x) = 314928 + 2644083x− 861584x2 + 176832x3 + 442368x4.
(3.4)

This result constitutes, to the best of our knowledge, the first explicit example
of an extremal P ∗n which solves Schur’s problem according to Erdös-Szegö ([3],
Theorem 2) (here for the first Zolotarev case n = 4). It is therefore worth
summarizing the properties of that Schur polynomial P ∗4 ∈ B4:
(i) The equiripple property on I, i.e., 4 alternation points, including the
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endpoints ±1:

P ∗4 (−1) = −1,

P ∗4 (y1) = 1 and P
∗(1)
4 (y1) = 0,where

y1 = 1
72 (39 + 17

√
33−

√
30(527 + 97

√
33)) = −0.6068607378...,

P ∗4 (y2) = −1 and P
∗(1)
4 (y2) = 0,where

y2 = 1
72 (105−

√
33−

√
30(95 + 17

√
33)) = 0.322651693...,

P ∗4 (1) = 1.
(3.5)

(ii) The Zolotarev property at three points A4 < B4 < C4 to the right of I
(of which B4 and C4 are two additional alternation points)

P
∗(1)
4 (A4) = 0, where

A4 =
279 + 25

√
33 +

√
30(2879 + 561

√
33)

576
= 1.4764907146...,

P ∗4 (B4) = 1, where B4 is given in (3.2),
P ∗4 (C4) = −1, where

C4 =
201 + 55

√
33−

√
330(61 + 19

√
33)

144
= 1.9444055070... .

(3.6)
Additionally, by construction, P ∗4 satisfies

P
∗(2)
4 (1) = 2(a∗2 + 3a∗3 + 6a∗4) = 0, i.e., P ∗4 ∈ B4,1,2

P
∗(1)
4 (1) = a∗1 + 2a∗2 + 3a∗3 + 4a∗4 = 16M4, see (2.3),

(3.7)

and we add, by inspection, that

a∗3 = 1− a∗1 and a∗4 = −a∗0 − a∗2. (3.8)

That particular hard-core Zolotarev polynomial P ∗4 may well serve as eluci-
dating example to provide for explanation purposes in lectures or expository
writings on Schur’s problem, respectively on its solution by Erdös-Szegö, see
e.g. [4].

4. Alternative deductions of an explicit extremal hard-core
Zolotarev polynomial in the quartic case

In ([12], p. 357) we have provided explicit expressions for the parameterized
coefficients of an arbitrary fourth-degree hard-core Zolotarev polynomial on
I. But since the assumption was made there that it attains the value 1 at
x = −1, we prefer to consider here the negative form of that polynomial in
order to be compliant with [3]. We hence set

Z4,t(x) =

4∑
i=0

−ai(t)xi, with 1 < t < 1 +
√

2 (4.1)
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where the coefficients ai(t) read as follows:

a0(t) =
(
−a5 − b3 + a4(−2 + 3b) + a3(−1 + 6b− 3b2)+
+a(3b2 − 2b3) + a2(3b+ 2b2 + b3)

)
κ,

a1(t) = (a2(−16b+ 8b2) + a(−12b+ 8b2 − 4b3))κ,
a2(t) = (a2(8− 16b) + 6b− 4b2 + 2b3 + a(6− 4b+ 2b2))κ,
a3(t) = (−4 + 8a2 + 8b+ 8ab− 4b2)κ,
a4(t) = (−4− 6a+ 2b)κ

(4.2)

with

κ =
1

(1 + a)2(−a+ b)3

a =
1− 3t− t2 − t3

(1 + t)3

b =
1 + t+ 3t2 − t3

(1 + t)3
.

(4.3)

Here a and b with a < b are the alternation points of Z4,t in the interior
of I. We now proceed to determine the optimal parameter t = t∗ and the
corresponding explicit coefficients −ai(t∗) of an extremal polynomial Z4,t∗

with Z4,t∗(x) =
4∑
i=0

−ai(t∗)xi which, according to the general result in ([3],

Theorem 2), solves Schur’s problem (1.2) for n = 4.

The assumption Z4,t ∈ B4,1,2, i.e., Z
(2)
4,t (1) = 0, implies

a2(t) + 3a3(t) + 6a4(t) = 0. (4.4)

Employing the definition of ai(t) in (4.2),(4.3) this amounts to the following
equation, after some algebraic manipulations:

(1 + t)3(3 + t(2 + t))(−2 + t(−7 + t(1 + 3(−1 + t)t)))

4(t+ t3)2
= 0. (4.5)

The numerator vanishes, for 1 < t < 1 +
√

2, only if we choose

t = t∗ =
3 +
√

33 +
√

30(−1 +
√

33)

12
= 1.7229220588..., (4.6)

which is a root of the polynomial P4(x) = −2−7x+x2−3x3 +3x4. Inserting
the optimal parameter (4.12) into the coefficients −ai(t) of Z4,t, see (4.2),
(4.3), shows that −ai(t∗) indeed coincides for i = 0, 1, 2, 3, 4 with a∗i as given
in (3.3). We check only the coefficient −a4(t) and leave it to the reader to
check the remaining coefficients:

− a4(t) =
4 + 6a− 2b

(1 + a)2(−a+ b)3
=

(1− t)(1 + t)9

32t3(1 + t2)2
, (4.7)

and inserting now t = t∗ according to (4.12) indeed yields −a4(t∗) = a∗4
as given in (3.3). After all, we so obtain an alternative and independent
deduction of the extremal hard-core Zolotarev polynomial P ∗4 = Z4,t∗ which
we had already found in Section 3, based on preliminary work in [3].
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A third argument can be brought forward to prove that P ∗4 = Z4,t∗ is
the sought-for extremizer in 1.2 for n = 4, see ([12], Theorem 5.10): It suffices
to verify that the following five equations hold true

−1 + 2(−y1 + y2)− (1 +B4 − C4) = 0 (4.8)

1 + 2(−y21 + y22)− (1 +B2
4 − C2

4 ) = 0 (4.9)

−1 + 2(−y31 + y32)− (1 +B3
4 − C3

4 ) = 0 (4.10)

16(A4 − 1)2

(B4 − 1)(C4 − 1)
= 1 + 2

(
2

A4 − 1
− 1

B4 − 1
− 1

C4 − 1

)
(4.11)

A4 =
3

8
(B4 + C4)− 1

4
(y1 + y2), (4.12)

where y1 and y2 are defined in (3.5), A4 and C4 are defined in (3.6), and B4

is defined in (3.2). We leave it to the reader to check the validity of equations
(4.8) - (4.12). Summarizing, we have thus established

Proposition 4.1. Polynomial P ∗4 with P ∗4 (x) =
4∑
i=0

a∗i x
i and explicit coeffi-

cients a∗i (i = 0, 1, 2, 3, 4) according to (3.3) is a sought-for extremal hard-core
Zolotarev polynomial of degree four which solves, according to Erdös-Szegö
([3], Theorem 2), Schur’s problem (1.2) for n = 4. The corresponding maxi-

mum supξ∈I supP4∈B4,ξ,2

∣∣∣P (1)
4 (ξ)

∣∣∣ = 16M4 is explicitly given in (2.3), so that

M4 equals the constant given in (2.5).

5. A generalized Schur problem and its solution for the
quartic case

A. A. Markov’s inequality (1.1) for the first derivative of Pn was generalized
in 1892 by his half-brother V. A. Markov ([9], p. 93) to the k -th derivative
and can be restated as follows, see also ([10], p. 545), ([13], Theorem 2.24):

sup
ξ∈I

sup
Pn∈Bn

∣∣∣P (k)
n (ξ)

∣∣∣ =

k−1∏
j=0

n2 − j2

2j + 1
= T (k)

n (1), (1 ≤ k ≤ n), (5.1)

indicating that the maximum is attained if Pn = Tn and ξ = 1. Shadrin [16]
has analogously generalized Schur’s problem (1.2) to the k -th derivative.
This generalized problem can be stated as follows:
Determine, for 1 ≤ k ≤ n − 2 and n ≥ 4, an algebraic polynomial Pn = P ∗n
of degree ≤ n which attains the maximum

sup
ξ∈I

sup
Pn∈Bn,ξ,k+1

∣∣∣P (k)
n (ξ)

∣∣∣ =

k−1∏
j=0

n2 − j2

2j + 1
Mn,k = T (k)

n (1)Mn,k, (5.2)

where Bn,ξ,k+1 = {Pn ∈ Bn : P
(k+1)
n (ξ) = 0} and Mn,k is a constant (de-

pending on n and k). Shadrin ([16], Proposition 4.4) found that, for k ≥ 2,
this maximum is attained if ξ = 1 and Pn = P ∗n ∈ Bn,1,k+1 is a Zolotarev
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polynomial Zn (not necessarily a hard-core one), or if ξ = ωk,n, the rightmost

zero of T
(k+1)
n , and Pn = P ∗n = Tn, so that altogether there holds:

sup
ξ∈I

sup
Pn∈Bn,ξ,k+1

∣∣∣P (k)
n (ξ)

∣∣∣ = max{|Z(k)
n (1)|, |T (k)

n (ωk,n)|}. (5.3)

We are now going to determine that maximum as well as an extremizer
polynomial for the quartic case n = 4 and for the second derivative, i.e.,
k = 2 = n− 2 (the case k = 1 is settled in Proposition 4.1). It is well known
that Zolotarev polynomials Zn of degree n ≥ 4 on I satisfy ||Zn||∞ = 1
(maximum-norm) and exhibit at least n equiripple points on I where the
values ±1 are attained alternately, see ([16], p. 1190). Apart from sign and
reflection, the Zolotarev polynomial Z4 takes on the role (see also ([1], pp.
280), ([10], p. 406)):

(i) Z4 = T3, with T3(x) = −3x+ 4x3,

(ii) Z4 = T4, with T4(x) = 1− 8x2 + 8x4,

(iii) Z4 = T4,β , with T4,β(x) = T4

(
2x− β + 1

1 + β

)
where 1 < β ≤

1 + 2 tan2
(
π
8

)
= 7− 4

√
2 = 1.3431457505... ,

(iv) Z4 = Z4,t, the hard-core Zolotarev polynomial, as given in (4.1).

We first calculate |Z(2)
4 (1)|, subject to the constraint Z

(3)
4 (1) = 0, and observe

that polynomials (i), (ii), (iii) cannot be extremal due to T
(3)
3 (1) = 24 6= 0,

resp. T
(3)
4 (1) = 192 6= 0, resp. T

(3)
4,β (1) =

1536(3− β)

(1 + β)4
6= 0 if 1 < β ≤ 7−4

√
2.

For polynomial (iv) we get, after some algebraic manipulations,

|Z(3)
4,t (1)| =

∣∣∣∣3(1 + t)6(−1 + t(−8 + 2t+ 3t3))

8t3(1 + t2)2

∣∣∣∣ . (5.4)

The numerator vanishes for 1 < t < 1 +
√

2 only if

t = t∗∗ =
1 +

√
2(−1 +

√
3)

√
3

= 1.2759444802... . (5.5)

Inserting this parameter t∗∗ into |Z(2)
4,t (1)| yields, again after some manipula-

tions,

|Z(2)
4,t∗∗(1)| =

∣∣∣∣∣−12− 22√
3

+ 4

√
10

3
+ 2
√

3

∣∣∣∣∣ = 14.2729495641... . (5.6)

In view of (5.3), we have next to compare (5.6) to |T (2)
4 (ω2,4)|. Since the only,

and hence the rightmost, zero of T
(3)
4 is ω2,4 = 0, we get |T (2)

4 (0)| = | − 16| =
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16 > |Z(2)
4,t∗∗(1)|. So eventually we arrive at the identity

sup
ξ∈I

sup
P4∈B4,ξ,3

|P (2)
4 (ξ)| = max{|Z(2)

4 (1)|, |T (2)
4 (0)|} = 16

=
1∏
j=0

42 − j2

2j + 1
M4,2 = 80M4,2,

(5.7)

yielding M4,2 =
1

5
= 0.2. Summarizing, we have thus established

Proposition 5.1. Polynomial P ∗4 = T4 with T4(x) = 1−8x2 +8x4 is a sought-
for extremal polynomial of degree four which solves, according to Shadrin
([16], Proposition 4.4), the generalized Schur problem (5.2) for n = 4 and

k = 2. The corresponding maximum sup
ξ∈I

sup
P4∈B4,ξ,3

|P (2)
4 (ξ)| = 80M4,2 is 16, so

that M4,2 equals the constant 1
5 .

Shadrin ([16], Theorem 7.1) has added to (5.3) the following estimate
which can be viewed as an extension, to the k-th derivative, of Schur’s esti-
mate (1.3):

sup
ξ∈I

sup
Pn∈Bn,ξ,k+1

|P (k)
n (ξ)| ≤

k−1∏
j=0

n2 − j2

2j + 1
λn,k = T (k)

n (1)λn,k (1 ≤ k ≤ n− 2),

(5.8)

where λn,k =
1

k + 1
· n− 1

n− 1 + k
. Thus for k = 2 and n = 4 we get λ4,2 =

1

3
· 3

5
=

1

5
= 0.2 = M4,2, see (5.7). However, for k = 1 and n = 4 we get

λ4,1 =
1

2
· 3

4
=

3

8
= 0.375 > M4 = 0.299..., see (2.5) and ([16], Remark 5.5).

6. Concluding Remarks

1. In deducing Proposition 1 we have been guided by a computer algebra
system which the authors of [3], who have paved the way, certainly did not
have at their disposal.
2. Our explicit power form representation ([12], p. 357) for the fourth hard-
core Zolotarev polynomial Z4,t remained unnoticed, and several related for-
mulas have been published afterwards, e.g. ([2], p. 184), ([15], p. 242), ([18],
p. 721). Shadrin [15] attributes his formula (with a different range of the pa-
rameter t) to V. A. Markov [9] and remarks: But already for n = 4 it seems
that nobody really believed that an explicit form can be found. As a matter
of fact it was, by V. Markov in 1892. In a private communication Professor
Shadrin kindly called our attention to p. 73 in [9] from which his formula can
be recovered. However, one has first to exploit the relation 4z = t3 + t (see p.
71 in [9]), then fix the parameter α and finally rearrange the Taylor form of
the given fourth-degree polynomial, centered at x0 = 2z, to the usual power
form centered at x0 = 0. It is under these side conditions that priority for
the power form representation of Z4,t belongs indeed to V. A. Markov [9].
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3. In Section 4 we have alternatively deduced the Schur polynomial P ∗4 from
the explicit power form Z4,t(x) = ... as given, up to the sign, in ([12], p.
357). P ∗4 can likewise be deduced from the explicit power form Z4(x, t) = ...

as given in ([15], p. 242), however instead of Z
(2)
4,t (1) = 0 (see (4.4)) one has

then to set Z
(2)
4 (−1, t) = 0.

4. As some progress has been achieved in the computation of Zn,t for the
next higher polynomial degrees n ≥ 5 (see [5], [6], [7], [11]), we hope that we
will be able to extend our results to some n ≥ 5.
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