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The first Zolotarev case in the Erdös-Szegö
solution to a Markov-type extremal problem
of Schur

Heinz-Joachim Rack

Abstract. Schur’s [14] Markov-type extremal problem asks to find the

maximum (*) sup
−1≤ξ≤1

sup
Pn∈Bn,ξ,2

|P (1)
n (ξ)|, where Bn,ξ,2 = {Pn ∈ Bn :

P
(2)
n (ξ) = 0} ⊂ Bn = {Pn : |Pn(x)| ≤ 1 for |x| ≤ 1} and Pn is an

algebraic polynomial of degree ≤ n. Erdös and Szegö [3] found that for
n ≥ 4 this maximum is attained if ξ = ±1 and Pn ∈ Bn,ξ,2 is a member
of the 1-parameter family of hard-core Zolotarev polynomials Zn,t. Our
first result centers around their proof for the initial case n = 4 and is
three-fold: (i) the numerical value for (*) in ([3], (7.9)) is not correct,
but sufficiently precise; (ii) from preliminary work in [3] can in fact be
deduced a closed analytic expression for (*) if n = 4, allowing numerical
evaluation to any precision; (iii) even the explicit power form representa-
tion of an extremal Z4,t = Z4,t∗ can be deduced from [3], thus providing
an exemplification of Schur’s problem that seems to be novel. Addi-
tionally, we cross-check its validity by deriving Z4,t∗ conversely from a
general formula for Z4,t that we have given in [12]. We then turn to a
generalized solution of Schur’s problem, to k -th derivatives, by Shadrin
[16]. Again we provide in explicit form the corresponding maximum as
well as an extremizer polynomial for the first non-trivial degree n = 4.
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1. Introduction

The famous A. A. Markov inequality of 1889 [8] asserts an estimate on the
size of the first derivative of an algebraic polynomial Pn of degree ≤ n and
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can be restated as follows:

sup
ξ∈I

sup
Pn∈Bn

|P (1)
n (ξ)| = n2 = T (1)

n (1), (1.1)

where I = [−1, 1] and Bn = {Pn : |Pn(x)| ≤ 1 for x ∈ I}. As indicated,
this maximum will be attained if, up to the sign, Pn = Tn ∈ Bn is the n-th
Chebyshev polynomial of the first kind on I (defined by Tn(x) = 2xTn−1(x)−
Tn−2(x) with T1(x) = x, T0(x) = 1) and if ξ = ±1, see e.g. ([10], p. 529),
([13], p. 123).

In 1919 I. Schur ([14], §2), inspired by (1.1), was led to the problem of

finding the maximum of |P (1)
n (ξ)| under the additional restriction P

(2)
n (ξ) = 0:

Determine Pn = P ∗n which attains, for n ≥ 3,

sup
ξ∈I

sup
Pn∈Bn,ξ,2

|P (1)
n (ξ)| = n2Mn, (1.2)

where Bn,ξ,2 = {Pn ∈ Bn : P
(2)
n (ξ) = 0} and Mn is a constant (depending on

n). Schur ([14], (9)) proved that there holds

sup
ξ∈I

sup
Pn∈Bn,ξ,2

|P (1)
n (ξ)| < 1

2
n2, so that Mn <

1

2
. (1.3)

In 1942 P. Erdös and G. Szegö addressed this problem of Schur and they
provided the following solution ([3], Theorem 2):

The maximum (1.2) will be attained, for n ≥ 4, only if ξ = 1 and
Pn = P ∗n is a member of the 1-parameter family (with parameter t) of hard-
core Zolotarev polynomials ±Zn,t; or if ξ = −1 and Pn = P ∗n is a member of
the family ±Z−n,t, where Z−n,t(x) = Zn,t(−x).

We leave aside the simple case n = 3 (with solution ξ = 0 and
P3 = P ∗3 = ±T3 ([3], p. 466)). Henceforth we will confine ourselves to specify
only one extremal polynomial P ∗n for a given problem on I, but will keep in
mind that −P ∗n as well as ±Q∗n, where ±Q∗n(x) = ±P ∗n(−x), may likewise be
extremal. The solutions to (1.1) and (1.2) have in common that the maxi-
mum is attained at the endpoints ξ = ±1 of the unit interval I. But, on the
other hand, the solutions differ greatly when it comes to exhibit an explicit
extremal polynomial from Bn resp. Bn,ξ,2: Whereas in (1.1) an extremizer
is, for all n ≥ 1, the well-known n -th Chebyshev polynomial Tn [13], the
explicit power form of the intricate extremizers Zn,t in (1.2) remained arcane
for all n ≥ 4. This is due to the fact that for a general degree n the explicit
power form of a hard-core Zolotarev polynomial Zn,t is not known ([16], p.
1185). Rather, Zn,t can be expressed with the aid of elliptic functions (see
([1], pp. 280), ([10], p. 407), [18]) which amounts to an extremely complicated
concoction of elliptic quantities ([17], p. 52).
It is a purpose of this note to provide, nearly one hundred years after the
origin of Schur’s problem, the explicit power form of a particular hard-core
Zolotarev polynomial Zn,t = Zn,t∗ which is extremal for (1.2), at least for
the first nontrivial case n = 4. Such a solution was coined Schur polynomial
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in ([11], Section 5d), where a numerical method (solution of a system of non-
linear equations) is advised in order to determine it.
We will first tackle the explicit analytic expression for (1.2) if n = 4. Once
it has been established, to calculate its numerical value to arbitrary preci-
sion becomes immediate. Incidentally, we notice that the numerical value for
16M4 as given in ([3], (7.9)) is not correct from the third decimal place on.
We then deduce, in two alternative fashions, an extremal hard-core Zolotarev
polynomial P ∗4 = Z4,t∗ with optimal value t∗ of the parameter t. This Schur
polynomial P ∗4 may well serve as illustrative example of the result in ([3],
Theorem 2). Finally, we will consider a recent generalization of Schur’s prob-
lem (1.2), due to A. Shadrin [16], to higher derivatives of Pn, and again we
will exemplify the quartic case n = 4.

2. Analytical and numerical value of the maximum in the
quartic case

To determine the value in (1.2) for n = 4 we rely on preliminary work in ([3],
Section 7) and will therefore retain, for the reader’s convenience, the notation
used there. A sought-for extremal hard-core Zolotarev polynomial P ∗4 which
solves (1.2) can be assumed to be from class B4,1,2 and be represented as,
see ([3], (7.3)),

P ∗4 (x) = 1− λ(1− x)(B4 − x)(y1 − x)2, (2.1)

where λ,B4, y1 are parameters which reflect properties of P ∗4 , that is:

P ∗4 (−1) = −1, P ∗4 (y1) = 1, P
∗(1)
4 (y1) = 0, P ∗4 (1) = P ∗4 (B4) = 1. The first

and second derivative of P ∗4 at x = 1 read:

P
∗(1)
4 (1) = λ(B4−1)(1−y1)2 and P

∗(2)
4 (1) = 2λ(y1−1)(2(1−B4)−(y1−1)),

(2.2)

so that the condition P
∗(2)
4 (1) = 0 yields y1 = 3 − 2B4 which, when in-

serted into P
∗(1)
4 (1), eliminates there the parameter y1. From P ∗4 (−1) = −1

one deduces, upon inserting the said value of y1, that λ = 1
(B4+1)(4−2B4)2

,

see (2.1). This implies P
∗(1)
4 (1) = (B4−1)3

(B4−2)2(B4+1) . The identity 2
B4−1 =

11−
√

33 + 2
√

5(5 +
√

33)

8
, which is given in an equivalent form in ([3],

(7.8)), allows to evaluate B4 (see (3.2) below). Inserting this value of B4

into the preceding expression for P
∗(1)
4 (1) eventually yields the analytical ex-

pression for the maximum, which can be evaluated numerically to any desired



4 Heinz-Joachim Rack

precision:

P
∗(1)
4 (1) = supξ∈I supP4∈B4,ξ,2

∣∣∣P (1)
4 (ξ)

∣∣∣ = 16M4

=
−561 + 161

√
33 +

√
30(15215 + 3329

√
33)

288

= 4.7876468942...,

(2.3)

being a root of P4(x) = −65536− 39424x− 1915x2 + 1683x3 + 216x4.

By contrast, Formula (7.9) in [3] states that

P
∗(1)
4 (1) = 4.7881... (2.4)

holds, a value which is now seen to be biased in the third and fourth decimal
place.
But that bias does not harm the argument in [3] for n = 4 since the first
two valid decimal places are sufficiently conclusive for P ∗4 to be the extremal
element (as a comparison is drawn with competitor polynomial T4 and value∣∣∣T (1)

4

(
1√
6

)∣∣∣ = 4.3546... , see ([3], (7.2))).

The constant M4 itself can thus be represented as

M4 =
P

∗(1)
4 (1)
16 = supξ∈I supP4∈B4,ξ,2

∣∣∣P (1)
4 (ξ)

∣∣∣
42

=
−561 + 161

√
33 +

√
30(15215 + 3329

√
33)

4608

= 0.2992279308... .

(2.5)

We note that according to ([3], (1.3), (1.4)) there holds lim
n→∞

Mn =

0.3124... . Schur ([14], p. 277) had obtained the weaker result 0.217... ≤
lim sup

n→∞
Mn ≤ 0.465... .

3. Explicit power form representation of an extremal
hard-core Zolotarev polynomial in the quartic case

Having expressed the parameters λ = λ(B4) and y1 = y1(B4) as functions
of B4 alone and knowing the value of the constant B4, it is possible to even
retrieve the explicit power form of an extremal P ∗4 . In fact, according to the
preceding Section we have

P ∗4 (x) = 1− λ(1− x)(B4 − x)(y1 − x)2

= 1− (1− x)(B4 − x)(3− 2B4 − x)2

(B4 + 1)(4− 2B4)2

(3.1)
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Inserting now

B4 =
177− 17

√
33 +

√
30(527 + 97

√
33)

144

= 1.8034303689...

(3.2)

and expanding (3.1) leads us, after some algebraic manipulations, to the
explicit power form representation of an extremal quartic hard-core Zolotarev

polynomial P ∗4 with P ∗4 (x) =
4∑
i=0

a∗i x
i and with coefficients

a∗0 =
21297− 2081

√
33−

√
30(3160847 + 628577

√
33)

9216
= −0.5328330303...

a∗1 =
291− 1139

√
33−

√
30(−1236313 + 427337

√
33)

4608
= −2.6688925571...

a∗2 =
−849 + 161

√
33 +

√
30(15215 + 3329

√
33)

384
= 2.8407351706...

a∗3 =
4317 + 1139

√
33 +

√
30(−1236313 + 427337

√
33)

4608
= 3.6688925571...

a∗4 =
−921− 1783

√
33−

√
330(−59555 + 64243

√
33)

9216
= −2.3079021403... .

(3.3)
These optimal coefficients a∗i are roots of the following respective quartic
polynomials P4,i with integer coefficients:

P4,0(x) = −7951932− 7463259x+ 11697424x2 − 4089024x3 + 442368x4

P4,1(x) = 12221 + 273251x− 7120x2 − 3492x3 + 13824x4

P4,2(x) = −236196− 112023x+ 17720x2 + 13584x3 + 1536x4

P4,3(x) = 288684− 303831x+ 65348x2 − 51804x3 + 13824x4

P4,4(x) = 314928 + 2644083x− 861584x2 + 176832x3 + 442368x4.
(3.4)

This result constitutes, to the best of our knowledge, the first explicit example
of an extremal P ∗n which solves Schur’s problem according to Erdös-Szegö ([3],
Theorem 2) (here for the first nontrivial case n = 4). It is therefore worth
summarizing the properties of that Schur polynomial P ∗4 ∈ B4:
(i) The equiripple property on I, i.e., 4 alternation points, including the
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endpoints ±1:

P ∗4 (−1) = −1,

P ∗4 (y1) = 1 and P
∗(1)
4 (y1) = 0,where

y1 = 1
72 (39 + 17

√
33−

√
30(527 + 97

√
33)) = −0.6068607378...

P ∗4 (y2) = −1 and P
∗(1)
4 (y2) = 0,where

y2 = 1
72 (105−

√
33−

√
30(95 + 17

√
33)) = 0.322651693...

P ∗4 (1) = 1.
(3.5)

(ii) The Zolotarev property at three points A4 < B4 < C4 to the right of I
(of which B4 and C4 are two additional alternation points)

P
∗(1)
4 (A4) = 0, where

A4 =
279 + 25

√
33 +

√
30(2879 + 561

√
33)

576
= 1.4764907146...

P ∗4 (B4) = 1, where B4 is given in (3.2)
P ∗4 (C4) = −1, where

C4 =
201 + 55

√
33−

√
330(61 + 19

√
33)

144
= 1.9444055070... .

(3.6)
Additionally, by construction, P ∗4 satisfies

P
∗(2)
4 (1) = 2(a∗2 + 3a∗3 + 6a∗4) = 0, i.e., P ∗4 ∈ B4,1,2

P
∗(1)
4 (1) = a∗1 + 2a∗2 + 3a∗3 + 4a∗4 = 16M4, see (2.3),

(3.7)

and from ([11], (5.21)) we adopt, for n = 4, the ancillary equation

A4 =
3

8
(B4 + C4)− 1

4
(y1 + y2). (3.8)

That particular hard-core Zolotarev polynomial P ∗4 may well serve as eluci-
dating example to provide for explanation purposes in lectures or expository
writings on Schur’s problem, respectively on its solution by Erdös-Szegö, see
e.g. [4].

4. Alternative deduction of an explicit extremal hard-core
Zolotarev polynomial in the quartic case

In ([12], p. 357) we have provided explicit expressions for the parameterized
coefficients of an arbitrary fourth-degree hard-core Zolotarev polynomial on
I. But since the assumption was made there that it attains the value 1 at
x = −1, we prefer to consider here the negative form of that polynomial in
order to be compliant with [3]. We hence set

Z4,t(x) =

4∑
i=0

−ai(t)xi, with 1 < t < 1 +
√

2 (4.1)
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where the ai(t) read as follows:

a0(t) =
(
−a5 − b3 + a4(−2 + 3b) + a3(−1 + 6b− 3b2)+
+a(3b2 − 2b3) + a2(3b+ 2b2 + b3)

)
κ

a1(t) = (a2(−16b+ 8b2) + a(−12b+ 8b2 − 4b3))κ,
a2(t) = (a2(8− 16b) + 6b− 4b2 + 2b3 + a(6− 4b+ 2b2))κ,
a3(t) = (−4 + 8a2 + 8b+ 8ab− 4b2)κ,
a4(t) = (−4− 6a+ 2b)κ

(4.2)

with

κ =
1

(1 + a)2(−a+ b)3

a =
1− 3t− t2 − t3

(1 + t)3

b =
1 + t+ 3t2 − t3

(1 + t)3

(4.3)

Here a and b with a < b are the alternation points of Z4,t in the interior
of I. We now proceed to determine the optimal parameter t = t∗ and the
corresponding explicit coefficients −ai(t∗) of an extremal polynomial Z4,t∗

with Z4,t∗(x) =
4∑
i=0

−ai(t∗)xi which, according to the general result in ([3],

Theorem 2), solves Schur’s problem (1.2) for n = 4.

The assumption Z4,t ∈ B4,1,2, i.e., Z
(2)
4,t (1) = 0, implies

a2(t) + 3a3(t) + 6a4(t) = 0. (4.4)

Employing the definition of ai(t) in (4.2),(4.3) this amounts to the following
equation, after some algebraic manipulations:

(1 + t)3(3 + t(2 + t))(−2 + t(−7 + t(1 + 3(−1 + t)t)))

4(t+ t3)2
= 0. (4.5)

The numerator vanishes, for 1 < t < 1 +
√

2, only if we choose

t = t∗ =
3 +
√

33 +
√

30(−1 +
√

33)

12
= 1.7229220588..., (4.6)

which is a root of the polynomial P4(x) = −2−7x+x2−3x3 +3x4. Inserting
the optimal parameter (4.6) into the coefficients −ai(t) of Z4,t, see (4.2),
(4.3), shows that −ai(t∗) indeed coincides for i = 0, 1, 2, 3, 4 with a∗i as given
in (3.3). We check only the coefficient −a4(t) and leave it to the reader to
check the remaining coefficients:

−a4(t) =
4 + 6a− 2b

(1 + a)2(−a+ b)3
=

(1− t)(1 + t)9

32t3(1 + t2)2
,

and inserting now t = t∗ according to (4.6) indeed yields −a4(t∗) = a∗4
as given in (3.3). After all, we so obtain an alternative and independent
deduction of the extremal hard-core Zolotarev polynomial P ∗4 = Z4,t∗ which



8 Heinz-Joachim Rack

we had already found in Section 3, based on preliminary work in [3].
Summarizing, we have thus established

Proposition 4.1. Polynomial P ∗4 with P ∗4 (x) =
4∑
i=0

a∗i x
i and explicit coeffi-

cients a∗i (i = 0, 1, 2, 3, 4) according to (3.3) is a sought-for extremal hard-core
Zolotarev polynomial of degree four which solves, according to Erdös-Szegö
([3], Theorem 2), Schur’s problem (1.2) for n = 4. The corresponding maxi-

mum supξ∈I supP4∈B4,ξ,2

∣∣∣P (1)
4 (ξ)

∣∣∣ = 16M4 is explicitly given in (2.3), so that

M4 equals the constant given in (2.5).

5. A generalized Schur problem and its solution for the
quartic case

A. A. Markov’s inequality (1.1) for the first derivative of Pn was generalized
in 1892 by his half-brother V. A. Markov ([9], p. 93) to the k -th derivative
and can be restated as follows, see also ([10], p. 545), ([13], Theorem 2.24):

sup
ξ∈I

sup
Pn∈Bn

∣∣∣P (k)
n (ξ)

∣∣∣ =

k−1∏
j=0

n2 − j2

2j + 1
= T (k)

n (1), (1 ≤ k ≤ n), (5.1)

indicating that the maximum is attained if Pn = Tn and ξ = 1. Shadrin [16]
has analogously generalized Schur’s problem (1.2) to the k -th derivative.
This generalized problem can be stated as follows:
Determine, for 1 ≤ k ≤ n − 2 and n ≥ 4, an algebraic polynomial Pn = P ∗n
of degree ≤ n which attains the maximum

sup
ξ∈I

sup
Pn∈Bn,ξ,k+1

∣∣∣P (k)
n (ξ)

∣∣∣ =

k−1∏
j=0

n2 − j2

2j + 1
Mn,k = T (k)

n (1)Mn,k, (5.2)

where Bn,ξ,k+1 = {Pn ∈ Bn : P
(k+1)
n (ξ) = 0} and Mn,k is a constant (de-

pending on n and k). Shadrin ([16], Proposition 4.4) found that, for k ≥ 2,
this maximum is attained if ξ = 1 and Pn = P ∗n ∈ Bn,1,k+1 is a Zolotarev
polynomial Zn (not necessarily a hard-core one), or if ξ = ωk,n, the rightmost

zero of T
(k+1)
n , and Pn = P ∗n = Tn, so that altogether there holds:

sup
ξ∈I

sup
Pn∈Bn,ξ,k+1

∣∣∣P (k)
n (ξ)

∣∣∣ = max{|Z(k)
n (1)|, |T (k)

n (ωk,n)|}. (5.3)

We are now going to determine that maximum as well as an extremizer
polynomial for the quartic case n = 4 and for the second derivative, i.e.,
k = 2 = n− 2 (the case k = 1 is settled in Proposition 4.1). It is well known
that Zolotarev polynomials Zn of degree n ≥ 4 on I satisfy ||Zn||∞ = 1
(maximum-norm) and exhibit at least n equiripple points on I where the
values ±1 are attained alternately, see ([16], p. 1190). Apart from sign and
reflection, the Zolotarev polynomial Z4 takes on the role (see also ([1], pp.
280), ([10], p. 406)):
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(i) Z4 = T3, with T3(x) = −3x+ 4x3

(ii) Z4 = T4, with T4(x) = 1− 8x2 + 8x4

(iii) Z4 = T4,β , with T4,β(x) = T4

(
2x− β + 1

1 + β

)
where 1 < β ≤

1 + 2 tan2
(
π
8

)
= 7− 4

√
2 = 1.3431457505...,

(iv) Z4 = Z4,t, the hard-core Zolotarev polynomial, as given in (4.1).

We first calculate |Z(2)
4 (1)|, subject to the constraint Z

(3)
4 (1) = 0, and observe

that polynomials (i), (ii), (iii) cannot be extremal due to T
(3)
3 (1) = 24 6= 0,

resp. T
(3)
4 (1) = 192 6= 0, resp. T

(3)
4,β (1) =

1536(3− β)

(1 + β)4
6= 0 if 1 < β ≤ 7−4

√
2.

For polynomial (iv) we get, after some algebraic manipulations,

|Z(3)
4,t (1)| =

∣∣∣∣3(1 + t)6(−1 + t(−8 + 2t+ 3t3))

8t3(1 + t2)2

∣∣∣∣ . (5.4)

The numerator vanishes for 1 < t < 1 +
√

2 only if

t = t∗∗ =
1 +

√
2(−1 +

√
3)

√
3

= 1.2759444802... . (5.5)

Inserting this parameter t∗∗ into |Z(2)
4,t (1)| yields, again after some manipula-

tions,

|Z(2)
4,t∗∗(1)| =

∣∣∣∣∣−12− 22√
3

+ 4

√
10

3
+ 2
√

3

∣∣∣∣∣ = 14.2729495641... . (5.6)

In view of (5.3), we have to compare (5.6) to |T (2)
4 (ω2,4)|. Since the only, and

hence the rightmost, zero of T
(3)
4 is ω2,4 = 0, we get |T (2)

4 (0)| = | − 16| =

16 > |Z(2)
4,t∗∗(1)|. So eventually we arrive at the identity

sup
ξ∈I

sup
P4∈B4,ξ,3

|P (2)
4 (ξ)| = max{|Z(2)

4 (1)|, |T (2)
4 (0)|} = 16

=
1∏
j=0

42 − j2

2j + 1
M4,2 = 80M4,2,

(5.7)

yielding M4,2 =
1

5
= 0.2. Summarizing, we have thus established

Proposition 5.1. Polynomial P ∗4 = T4 with T4(x) = 1−8x2 +8x4 is a sought-
for extremal polynomial of degree four which solves, according to Shadrin
([16], Proposition 4.4), the generalized Schur problem (5.2) for n = 4 and

k = 2. The corresponding maximum sup
ξ∈I

sup
P4∈B4,ξ,3

|P (2)
4 (ξ)| = 80M4,2 is 16, so

that M4,2 equals the constant 1
5 .
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Shadrin ([16], Theorem 7.1) has added to (5.3) the following estimate
which can be viewed as an extension, to the k-th derivative, of Schur’s esti-
mate (1.3):

sup
ξ∈I

sup
Pn∈Bn,ξ,k+1

|P (k)
n (ξ)| ≤

k−1∏
j=0

n2 − j2

2j + 1
λn,k = T (k)

n (1)λn,k (1 ≤ k ≤ n− 2),

(5.8)

where λn,k =
1

k + 1
· n− 1

n− 1 + k
. Thus for k = 2 and n = 4 we get λ4,2 =

1

3
· 3

5
=

1

5
= 0.2 = M4,2, see (5.7). However, for k = 1 and n = 4 we get

λ4,1 =
1

2
· 3

4
=

3

8
= 0.375 > M4 = 0.299..., see (2.5) and ([16], Remark 5.5).

6. Concluding Remarks

1. In deducing Proposition 1 we have been guided by a computer algebra
system which the authors of [3], who have paved the way, certainly did not
have at their disposal.
2. Our explicit power form representation ([12], p. 357) for the fourth hard-
core Zolotarev polynomial Z4,t remained unnoticed, and several related for-
mulas have been published afterwards, e.g. ([2], p. 184), ([15], p. 242), ([18],
p. 721). Shadrin [15] attributes his formula (with a different range of the pa-
rameter t) to V. A. Markov [9] and remarks: But already for n = 4 it seems
that nobody really believed that an explicit form can be found. As a matter
of fact it was, by V. Markov in 1892. In a private communication Professor
Shadrin kindly called our attention to p. 73 in [9] from which his formula can
be recovered. However, one has first to exploit the relation 4z = t3 + t (see p.
71 in [9]), then fix the parameter α and finally rearrange the Taylor form of
the given fourth-degree polynomial, centered at x0 = 2z, to the usual power
form centered at x0 = 0. It is under these side conditions that priority for
the power form representation of Z4,t belongs indeed to V. A. Markov [9].
3. In Section 4 we have alternatively deduced the Schur polynomial P ∗4 from
the explicit power form Z4,t(x) = ... as given, up to the sign, in ([12], p.
357). P ∗4 can likewise be deduced from the explicit power form Z4(x, t) = ...

as given in ([15], p. 242), however instead of Z
(2)
4,t (1) = 0 (see (4.4)) one has

then to set Z
(2)
4 (−1, t) = 0.

4. As some progress has been achieved in the computation of Zn,t for the
next higher polynomial degrees n ≥ 5 (see [5], [6], [7], [11]), we hope that we
will be able to extend our results to some n ≥ 5.
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[14] Schur, I., Über das Maximum des absoluten Betrages eines Polynoms in einem
gegebenen Intervall, Math. Z. 4 (1919), 271-287.

[15] Shadrin, A., Twelve proofs of the Markov inequality, in Approximation Theory:
A volume dedicated to Borislav Bojanov, (D. K. Dimitrov et al., eds.), M.
Drinov Acad. Publ. House, Sofia, 2004, 233-298.

[16] Shadrin, A., The Landau-Kolmogorov inequality revisited, Discrete Contin.
Dyn. Syst. 34 (2014), 1183-1210.

[17] Todd, J., A legacy from E. I. Zolotarev (1847-1878), Math. Intell. 10 (1988),
50-53.
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