A modified Post Widder operators preserving e Ax

Vijay Gupta, Gancho Tachev


In the present paper, we discuss the approximation properties of modified Post-Wiidder operators, which preserve the test function e Ax. We establish weighted approximation and a direct quantitative estimate for the modified operators.

Full Text:



bibitem{oa1} O. Agratini, A sequence of positive linear operators associated with an approximation process, Appl. Math. Comput. 269 (2015), 23--28.

bibitem{oa2} O. Agratini, On an approximation process of integral type,

Appl. Math. Comput. 236 (2014), 195--201.

bibitem{oa} O. Agratini, A. Aral, E. Deniz, On two classes of approximation processes of integral type, Positivity 21 (3)(2017), 1189--1199.

bibitem{acar} T. Acar, A. Aral, D. C.-Morales and P. Garrancho, Sz'asz-Mirakyan operators which fix exponentials, Results Math. 72(2)(2017).

bibitem {ZD} Z. Ditzian, On global inverse theorems of Sz'asz and Baskakov operators, 31(2) (1979), 255-263.

bibitem{vgda} V. Gupta and D. Agrawal, Convergence by modified Post-Widder operators, Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. RACSAM 113(2)(2019), 1475--1486.

bibitem{vgvks} V. Gupta and V. K. Singh, Modified Post-Widder operators preserving exponential functions, Avanes in Mathematical Methods and High Performance Computing, Advances in Mechanics and Mathematics 41, Editors V. K. Singh et al. Springer Nature Switzerland (2019), 181--192.

bibitem{vggt} V. Gupta and G. Tachev, Approximation with Positive Linear Operators

and Linear Combinations, Series: Developments in Mathematics, Vol.

Springer, 2017.

bibitem{vg-kjm} V. Gupta and G. Tachev, Some results on Post-Widder operators preserving test function $x^r$, Kragujevac J. Math. 46(1)(2022), 149-165.

bibitem{vgpm} V. Gupta and P. Maheshwari, Approximation with certain Post Widder operators, Publ. Inst Math 105 (119)(2019), 1-6.

bibitem{vgmtr} V. Gupta and M. T. Rassias, Moments of Linear Positive Operators and Approximation, Series: SpringerBriefs in Mathematics, Springer Nature Switzerland AG (2019).

bibitem{GTVGAA} G. Tachev, V. Gupta and A. Aral, Voronovskja's theorem for functions with exponential growth, Georgian Math. J. DOI: https://doi.org/10.1515/gmj-2018-0041

bibitem{widder} D. V. Widder, The Laplace Transform, Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1941.

DOI: http://dx.doi.org/10.24193/subbmath.2022.3.11


  • There are currently no refbacks.