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A modified Post Widder operators preserving e’*

Vijay Gupta and Gancho Tachev

Abstract. In the present paper, we discuss the approximation properties of mod-
ified Post-Widder operators, which preserve the test function e*®. We establish
weighted approximation and a direct quantitative estimate for the modified op-
erators.
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1. Post-Widder operators

In the recent years some sequences of linear positive operators and the operators
of integral type have been studied in [2], [3] and [4] etc. Also the moments of several
operators have been provided in [8]. In the present article, we discuss the vatiant of
an integral operators viz. Post-Widder operators. Post-Widder operators are defined
for f € C[0,00) as (see [13]):

Po(fiz) = i(ﬁ)"ﬂ/f =% f(t) dt.

Following [7], we have

—(n+1)
Po(ef,z) = (1x9> . (1.1)
n

Very recently Gupta-Agrawal in [6] and Gupta-Tachev in [11] considered different
forms of modified Post-Widder operators preserving the test functions e,.,r € N.
Gupta-Singh in [9] estimated some quantitative convergence results of Post-Widder
operators preserving e, eb*.
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Let us consider that the Post-Widder operators preserve the test function e4®,

then we start with the following form
n+1 o0 .
) / e F(e) dt.
0

Pu(f,z) = ;(an(x)

Then using (1.1), we have

—(n+1
P (6At r) = et =(1- Ll(m)A e
n ’ n ’
implying
an(z) = %(1 _ e~ As/(nt1)y,

Thus our modified operators P, take the following form

5 1 A (n+1)

Pn(fvm) = E |:(16Am/(n+1)):|

oo _ At
/ t"e G-emAR/EDY (1) dt, (1.2)
0

with z € (0,00) and P,(f,0) = f(0), which preserve constant and the test function
eAe,

2. Lemmas

Lemma 2.1. We have for 8 > 0 that

_ (1 a- eAw/<n+1>)9) A '

ot _
Pn(e ,CU) - A

It may be observed that ﬁn(eet,x) may be treated as m.g.f. of the operators P,,

which may be utilized to obtain the moments of (1.2). Let uf»(x) = P,(e,, x), where
e-(t) =t", r € NU{0}. The moments are given by

uPr(z) = {”met,x)]g_o

[ o { (1 B (1- e—AI/(n+1))9> (n+1)H |
oor A
6=0

Few moments are given below:

Mﬁ"(l‘) = 1
P, n+1 —Az/(n
I !

B n+1)(n+2 —Az/(n
phr@) = UEDOED) ey,
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Lemma 2.2. The moments of arbitrary order, satisfy the following

. (n+ 1Dk —Az/(n
:ukP (:E) = T(l*@ Az/( +1))k,]€:0,1,..

where the Pochhammer symbol is defined by
(c)o=1, ()g=clc+1)---(c+k-1).

“ey

Further by linearity property and using Lemma 2.2, we have the following lemma:
Lemma 2.3. The central moments Uf" (z) = P,((t — )", x) are given below:
k
B YA _ (n+1);
P, _ _1\k k _ Az/(n+1) J _
U, (x)—ézo( 1) ](j>:c J1—e )7714], , kE=0,1,....

J

Also, for each n € N, we have

B 1
Uan (CL‘) _ (njl‘ )(1 _ e—Aw/(n—i—l) _ 1) —z,
Uf" (@) = (n+1)(n+2) (1— e An/(ntD)2 4 02 oy (n+1) (1 — e A/ (1))
A2 A
Lemma 2.4. For the central moments U;;" (z) = Po((t — 2), z), we have

Uzi"(x) = O(n_k),n —00,k=1,2,3,---

Proof. We observe that
Pn(fv :L') = Pn(fa O‘n(l'))a

where
an(z) = %(1_e—Am/<n+1>).
It is easy to verify y > 1 —e ¥ >y — % for y € [0,00). We set y = Az/(n+ 1) and
get
n > an(z) > n ([ Az 2 n
\ng1) T T n+l) 24°
Hence
x Ax*n 1
] <x—ap(r) < 1 + 30n 1) =0(n""),
by fixed z € [0, 00). Therefore
Po((t—a)2) = Pu((t—2), an(@))
= Pu((t —an(z) + an(z) — x)%, o ()
< Ck)Pa((t— an(m))2k7an($ﬂ)) + Po((z — an(:c)%, o ()
1
< Ck)-— + (@ = an(@))* = O(n7").

This completes the proof of Lemma 2.4. O
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3. Weighted approximation

We also analyse the behaviour of the operators on some weighted spaces.
Set ¢(z) = 14 e? 2 € RT and consider the following weighted spaces:

By(RY) = {f:R" = R:|f(x) < Ci(1+e™)},
Co(RT) = By(R")NC(RY),

Céf(RJr) = {f€C¢(R+): lim 1 (@) —Cg<oo},

z—oo 1 + eAx

where C7,Cy are constants depending on f. The norm is defined as

Flle = sup
zERT
Theorem 3.1. For each f € Cg(R*‘), we have
lim [|Pof — flls = 0.
Proof. Following [1, Th. 1] in order to prove the result we have to prove
lim ||P (e741/2) — ei42/2||, = 0,i = 0,1,2.

The result is true for ¢ = 0,4 = 2. It remains to verify it for ¢ = 1. By Lemma 2.1 we
have

1P (e/2) — 4772

CAx/(n —(n+1
(=) (D aas
= su
we]g‘* 1+ e
(1+ e*Aw/(nH))‘("*” ontl _ eA“C/Q’
= su
ze]gr L+ elr
A7 (14 eAa;/(n+1))*(”+1) on+1 _ eAw/Q‘
= su
avelg)+ L+ el
- Az n+1
_ e 2 —Az/2
e _1+eml "(Hemﬂnﬂ)) o ' .

Obviously % €[3,1), A>0, >0 Weset t = eA?/2 t € [1,00) for 2 € (0, 00).

2
Then (3.1) implies
=¢1 M " -1
1+ t2/(n+1)

9 n+1
S — — -1 —
‘(1 - t2/<n+1>> t =g(t). (3.2)
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2 n+1
()
1+ y?
n+1
2 )
1492

2 n+1
= y<”+1>< ) . (3.3)

In (3.2), we set t'/("+1) =4 € [1, 00). Hence

gty =hly) = y O+

1492

We have h(1) = 0, h(+00) = lim,_, h(y) = 0. To find the global maxima of h(y)
we solve the equation h'(y) = 0. Simple calculations imply that h'(yo) = 0 for yo
satisfying the equation

2 —(n+3)/(n+2)
= 1 . 3.4
1+y3 Yo ’y0€(7oo) ( )
The equations (3.3) and (3.4) imply

h(y) < h(yo) _ y(;(nJrl) _ ya(n+3)(n+1)/(n+2). (35)

The proof will be completed if we show

1
h — . 3.6
() < gy 0 (36)

We set in (3.5) g™ = 2o € (1,400). Then h(yo) = 25" — 25 "/ < maxp(z)
n+2
with p(z) = 271 — 2= (*+3)/("+2) We compute that p(z;) for z; = (n+3> .

n+2
Therefore
n+3 —(n+2) n+3 —(n+3)
piz) = <n+2> _(n+2>
_ (3T a3
N n+2 n+2
1\ g 1
= 1
< Jr71—&-2) n+3<2(n+3)’
. 1 —(n+2) =
due to nh_{rgo (1+m> =e !t <1/2. O

4. A direct quantitative estimate

Our goal in this section is to obtain a quantitative form of the statement in
Theorem 3.1. For the sake of simplicity we slightly modify the weight function and
instead of ¢(x) = 1 + 4% 2 € RT we consider ¢(x) = e4*, 2 € RT, For continuous
functions on [0, c0) with exponential growth i.e.

[1fl]a:= sup )\f(r) e < oo, A >0, (4.1)

z€[0,00
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it is easy to observe that

1Paflla < [If]]a- (4.2)
Consequently if the following function series is uniformly convergent on [0, 00)
S(z) = Zuk(x),ac € [0, 00),
k=0
then
Po(S(t), ) = > Pu(u(t),z), 2 € [0,00), (4.3)
k=0

where the last series is also uniformly convergent. For our goals in this section we
need the first order exponential modulus of continuity, studied by Ditzian in [5] and
defined as

wi(f,6,4):= sup |f(z)— f(z+h)le .
h<4,0<z<c0

We consider the sequence of operators P, : E — C [0,00), where the domain of the
operator P,, contains the space of functions f with exponential growth, i.e. || f||a < oco.
Our main result states the following:

Theorem 4.1. Let 15n : E — C0,00) be sequence of linear positive operators of Post-
Widder type defined in (1.2). Then

Ba( o) — f(2)] < €2 [3 4 Cln, 2))wi (f, /UL (2), A),

where
Ak p
C(n,x) = 22 HV Ulr(x), n — oo for fived x € [0,00).
k=1

Proof. We observe that

e (f,8,A), [t —z| <6

10— sl { i I s (4.0

where k is the smallest natural number in the above upper bound. Now [12, Lemma
2.2] (also see [10]) implies

w1(f, ko, A)

IN

keAF=1001 (f, 6, A)

wi(f,8,A) {t;x' + 1} eAlt—al, (4.5)

N

Now (4.4) and (4.5) imply

|t — |

lf(t) = f(@)| < {1+< +1> eA'It_“’l] Wi (f, 6, A). (4.6)
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For fixed x € [0, 00) the following series is uniformly convergent for ¢ € [0, 00)

a = (At — z|)*
Sl(t,x) _ A.\t |_Z( ‘k' D
k=0
t—ux [t —x A’“t ket
| 5 |Sl(t,x) = | 52 | | (4.7)

Obviously for linear positive operators P, using (4.4), (4.6) and (4.7), we obtain

IPa(f(t) = f@)] < Pullf(t) = f(@)],2)

1~
< eAz{1+P (S1(t, ), z) + gP ()t — x|, x)
1 > AP, 15—3:|k“‘1 x)
+5 Z } (f,6,A). (4.8)
From Cauchy Schwarz inequality, we have
P (|t — z|*1, x) \/P t—x)? \/P (t —x)%kx)
Vol @)y U;;;L (@) (49)
Further
= (At — z|)*
Si(t,x) =14 Alt — x| —i—Z %
k=2
Hence

Pu(Si(tz),z) < 1+ AU (@ iAk Ui (@ ), (4.10)

From Lemma 2.4, for fixed z € [0, 00), we have
Ui" (z) = O0(n"%),n — . (4.11)
We set in (4.8) that
§ =\ UP () = O(n~/?),n — . (4.12)
Therefore estimates (4.8)-(4.12) imply
|Pa(f,2) = f(@)] < M3+ Clnw)en(f VU3 (2), A),
where

/77Pn oo B,
Cln,z) = A /U2 UQk AF ng( x) — o

k 1

n_1/2),n — 00,

by fixed x € [0, 00). This completes the proof of theorem. O
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