Korovkin type theorem in the space $C_{b}[0,\infty)$
Keywords:
Korovkin theorem, modulus of continuity, $K$-functional, $q$-integers, $q$-BaskakovAbstract
A Korovkin type theorem is established in the space $C_{b}[0,\infty)$ of all continuous and bounded functions on $[0,\infty)$ for a sequence of positive linear operators, the approximation error being estimated with the aid of the usual modulus of continuity. As applications we obtain quantitative results for $q$-Baskakov operators.References
bibitem{Andrews} Andrews, G. E., Askey, R., Roy, R., emph{Special Functions}, Cambridge Univ. Press, Cambridge, 1999.
bibitem{Aral1} Aral, A., Gupta, V., emph{On $q$-Baskakov type operators}, Demonstratio Math., textbf{42}(2009), no. 1, 107-120.
bibitem{Aral2} Aral, A., Gupta, V., emph{Generalized $q$-Baskakov operators}, Math. Slovaca, textbf{61}(2011), no. 4, 619-634.
bibitem{Baskakov} Baskakov, V. A., emph{An example of a sequence of linear positive operators in the space of continuous functions}, Dokl. Akad. Nauk SSSR, textbf{113}(1957), 249-251 (in Russian).
bibitem{DeVore} DeVore, R. A., Lorentz, G. G., emph{Constructive Approximation}, Springer, Berlin, 1993.
bibitem{Finta1} Finta, Z., emph{Note on a Korovkin-type theorem}, J. Math. Anal. Appl., textbf{415}(2014), 750-759.
bibitem{Finta2} Finta, Z., emph{Korovkin type theorem for sequences of operators depending on a parameter}, Demonstratio Math., textbf{48}(2015), no. 3, 381-403.
bibitem{Gadjiev1} Gadjiev, A. D., emph{A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P.P. Korovkin's theorem}, Dokl. Akad. Nauk SSSR, textbf{218}(1974), 1001-1004 (in Russian); English translation: Soviet Math. Dokl., textbf{15} (1974), no. 5, 1433-1436.
bibitem{Gadjiev2} Gadjiev, A. D., emph{Theorems of the type of P.P. Korovkin's theorems}, Mat. Zametki, textbf{20}(1976), no. 5, 781-786 (in Russian); English translation: Soviet Math. Dokl., textbf{20} (1976), no. 5-6, 995-998.
bibitem{Ilinskii} Il'inskii, A., Ostrovska, S., emph{Convergence of generalized Bernstein polynomials}, J. Approx. Theory, textbf{116}(2002), 100-112.
bibitem{Kac} Kac, V., Cheung, P., emph{Quantum Calculus}, Springer, New York, 2002.
bibitem{Phillips} Phillips, G. M., emph{Bernstein polynomials based on the q-integers}, Ann. Numer. Math., textbf{4}(1997), 511-518.
bibitem{Radu} Radu, C., emph{On statistical approximation of a general class of positive linear operators extended in $q$-calculus}, Appl. Math. Comput., textbf{215}(2009), 2317-2325.
bibitem{Wang} Wang, H., emph{Korovkin-type theorem and application}, J. Approx. Theory, textbf{132}(2005), 258-264.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.