On subclasses of bi-convex functions defined by Tremblay fractional derivative operator
DOI:
https://doi.org/10.24193/subbmath.2019.4.02Keywords:
30C45, 30C50, 30C80Abstract
We introduce and investigate new subclasses of analytic and bi-univalent functions defined by modified Tremblay operator in the open unit disk. Also we obtain upper bounds for the coefficients of functions belonging to these classes.References
bibitem{Eker} Ak{i}n G. and S"{u}mer Eker S., emph{Coefficient estimates for a
certain class of analytic and bi-univalent functions defined by fractional
derivative}, C. R. Acad. Sci. S'{e}r. I textbf{352} (2014), 1005--1010.
bibitem{Ali} Ali R.M., Lee S.K., Ravichandran V., Supramaniam S., emph{Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions}, Applied Mathematics Letters, textbf{25} (2012) 344-351.
bibitem{Caglar}Caglar M.,Deniz E.,Srivastava H.M., emph{Second Hankel determinant for certain subclasses of bi-univalent functions}, Turk J Math (2017) textbf{41}, 694--706.
bibitem{Deniz} Deniz E., emph{Certain subclasses of bi-univalent functions satisfying subordinate
conditions}, J. Class. Anal. 2013; textbf{2}, 49-60.
bibitem{Brannan3} Brannan D.A., Taha T.S., emph{On some classes of bi-univalent functions}, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. See also Studia Univ. Babec{s}-Bolyai Math. 31 textbf{2} (1986) 70-77.
bibitem{Duren} Duren P.L., emph{Univalent Functions}, in: Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
bibitem{Esa et al} Esa Z., Kilicman A. , Ibrahim R. W.,Ismail M. R. and
Husain S. K. S., emph{Application of Modified Complex Tremblay Operator},
AIP Conference Proceedings 1739, 020059 (2016); http://doi.org/10.1063/1.4952539.
bibitem{Ibrahim-Jahangiri} Ibrahim R.W. , Jahangiri J.M., emph{Boundary
fractional differential equation in a complex domain.} Boundary Value
Problems, 2014 ; Article ID 66: 1 -- 11.
bibitem{Kumar} Kumar S. S., Kumar V. and Ravichandran V., emph{Estimates for the
initial coefficients of bi-univalent functions}, Tamsui Oxford J. Inform.
Math. Sci. textbf{29} (2013), 487--504.
bibitem{Lewin} Lewin M. , emph{On a coefficient problem for bi-univalent functions}, Proc. Amer. Math. Soc. textbf{18} (1967) 63-68.
bibitem{Magesh-and-Yamini2013} Magesh N. and Yamini J., emph{Coefficient bounds for
a certain subclass of bi-univalent functions}, Internat. Math.
Forum textbf{27} (2013), 1337--1344.
bibitem{Peng} Peng Z.G. and Han Q.Q. , emph{On the coefficients of several classes of bi-univalent
functions}, Acta Math. Sci. Ser. B Engl. Ed. textbf{34} (2014), 228-240.
bibitem{Pommerenke} Pommerenke Ch., emph{Univalent functions} Göttingen: Vandenhoeck Ruprecht 1975
bibitem{Rudin}Rudin W., emph{Real and Complex Analysis}, McGraw-Hill Education ; 3 edition (May 1, 1986)
bibitem{Owa Kyungpook} Owa S., emph{On the distortion theorems I}, Kyungpook Math.J. textbf{18} (1978), 53-59.
bibitem{Owa-Srivastava} Owa S. and Srivastava H.M., emph{Univalent and starlike
generalized hypergeometric functions}, Canad. J. Math.
textbf{39} (1987), 1057-1077.
bibitem{Srivastava-Eker-Ali} Srivastava H.M., S"{u}mer Eker S. and
Ali R.M., emph{Coefficient Bounds for a certain class of analytic and bi-univalent
functions}, Filomat textbf{29} (2015), 1839--1845.
bibitem{Srivastava} Srivastava H.M., Mishra A.K. and Gochhayat P., emph{Certain subclasses of analytic and bi-univalent functions}, Appl. Math. Lett. textbf{23} (2010) 1188-1192.
bibitem{Srivastava springer} Srivastava H.M., emph{Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions}, in: Nonlinear Analysis: Stability; Approximation; and Inequalities (Panos M. Pardalos,Pando G. Georgiev and Hari M. Srivastava, Editors.), Springer Series on Optimization and Its Applications, Vol. 68, Springer-Verlag, Berlin, Heidelberg and New York, 2012, pp. 607-630.
bibitem{Srivastava-Owa} Srivastava H.M. and Owa S., emph{Some characterization and
distortion theorems involving fractional calculus, linear operators
and certain subclasses of analytic functions}, Nagoya Math. J. textbf{106} (1987),1-28.
bibitem{Srivastava-Owa book} Srivastava H.M. and Owa S., emph{Univalent Functions, Fractional Calculus, and Their Applications}, Halsted Press, Ellis Horwood Limited, Chichester and JohnWiley and Sons, NewYork, Chichester, Brisbane and Toronto, 1989.
bibitem{Srivastava-Bansal} Srivastava H.M. and Bansal D., emph{Coefficient estimates
for a subclass of analytic and bi-univalent functions}, J. Egyptian Math. Soc.
textbf{23} (2015), 242--246.
bibitem{Eker2} S"{u}mer Eker S., emph{Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions},
Turk J Math (2016) textbf{40}: 641--646.
bibitem{Eker3} S"{u}mer Eker S., emph{Coefficient estimates for new subclasses of m-fold symmetric bi-univalent functions},
Theory and Applications of Mathematics and Computer Science 6 textbf{2} (2016) 103–-109.
bibitem{Taha} Taha T.S., emph{Topics in Univalent Function Theory}, Ph.D. Thesis, University of London, 1981.
bibitem{Tremblay} Tremblay R. , emph{Une Contribution `{a} la Th'{e}orie de la D%
'{e}riv'{e}e Fractionnaire} Ph.D. thesis, Laval University, Qu'{e}bec,
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.