On some coefficient estimates for a class of p-valent functions
DOI:
https://doi.org/10.24193/subbmath.2025.2.03Keywords:
p-valent functions, coefficient estimates, Hankel determinantAbstract
In this paper, we consider a class of p-valent functions. For functions in this class we find sharp estimates for their first three coefficients. Upper bound for the second order Hankel determinant is also obtained.References
[1] Cho, N.E., Kumar, V., Kwon, O.S., Sim, Y.J., Sharp coefficient bounds for certain p-valent functions, Bull. Math. Malays. Sci. Soc., 42(2019), 405-4016.
[2] Duren, P.L., Univalent Functions, Springer, Berlin/Heidelberg, Germany; New York, NY, USA 1983.
[3] Gupta, P., Nagpal, S., Ravichandran, V., Marx-Strohhfacker theorem for multivalent functions, Afr. Mat., 32(2021), 1421-1434.
[4] Hayami, T., Owa, S., Hankel determinant for p-valently starlike and convex functions of order , Gen. Math., 17(4)(2009), 29-44.
[5] Krisna, D.V., Ramreddy, T., Coeffcient inequality for certain subclasses of p-valent functions, Palest. J. Math., 4(1)(2015), 223-228.
[8] Li, M., Sugawa, T., A note on successive coeffcients of convex functions, Comput. Methods Funct. Theory, 17(2017), 179-193.
[6] Libera, R.J., Z lotkiewicz, E.J., Early coeffcients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2)(1982), 225-230.
[7] Libera, R.J., Z lotkiewicz, E.J., Coeffcient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2)(1983), 251-257.
[9] Marx, A., Unteruchungen uber schlicht Abbildungen, Math. Ann., 107(1932/33), 40-67.
[10] Noonan, J.W., Thomas, D.K., On the second Hankel determinant of arreally mean p-valent functions, Trans. Amer. Soc., 223(1976), 337-346.
[11] Ohno, R., Sugawa, T., Coe cient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions, Kyoto J. Math., 58(2)(2018), 227-241.
[13] Pommerenke, Ch., On the Hankel determinants of univalent functions, Mathematika, 14(1967), 108-112.
[12] Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
[14] Strohhfacker, E., Beitrage zur Theorie der schlicten Funktionen, Math. Z., 37(1933), 356-380.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.