On some coefficient estimates for a class of p-valent functions

Authors

DOI:

https://doi.org/10.24193/subbmath.2025.2.03

Keywords:

p-valent functions, coefficient estimates, Hankel determinant

Abstract

In this paper, we consider a class of p-valent functions. For functions in this class we find sharp estimates for their first three coefficients. Upper bound for the  second order Hankel determinant is also obtained.

Author Biographies

  • Alexandrina Maria Proca, Transilvania University of Brașov

    Faculty of Mathematics and Computer Science

  • Dorina Răducanu, Transilvania University of Brașov

    Faculty of Mathematics and Computer Science

References

[1] Cho, N.E., Kumar, V., Kwon, O.S., Sim, Y.J., Sharp coefficient bounds for certain p-valent functions, Bull. Math. Malays. Sci. Soc., 42(2019), 405-4016.

[2] Duren, P.L., Univalent Functions, Springer, Berlin/Heidelberg, Germany; New York, NY, USA 1983.

[3] Gupta, P., Nagpal, S., Ravichandran, V., Marx-Strohhfacker theorem for multivalent functions, Afr. Mat., 32(2021), 1421-1434.

[4] Hayami, T., Owa, S., Hankel determinant for p-valently starlike and convex functions of order , Gen. Math., 17(4)(2009), 29-44.

[5] Krisna, D.V., Ramreddy, T., Coeffcient inequality for certain subclasses of p-valent functions, Palest. J. Math., 4(1)(2015), 223-228.

[8] Li, M., Sugawa, T., A note on successive coeffcients of convex functions, Comput. Methods Funct. Theory, 17(2017), 179-193.

[6] Libera, R.J., Z lotkiewicz, E.J., Early coeffcients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2)(1982), 225-230.

[7] Libera, R.J., Z lotkiewicz, E.J., Coeffcient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2)(1983), 251-257.

[9] Marx, A., Unteruchungen uber schlicht Abbildungen, Math. Ann., 107(1932/33), 40-67.

[10] Noonan, J.W., Thomas, D.K., On the second Hankel determinant of arreally mean p-valent functions, Trans. Amer. Soc., 223(1976), 337-346.

[11] Ohno, R., Sugawa, T., Coe cient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions, Kyoto J. Math., 58(2)(2018), 227-241.

[13] Pommerenke, Ch., On the Hankel determinants of univalent functions, Mathematika, 14(1967), 108-112.

[12] Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.

[14] Strohhfacker, E., Beitrage zur Theorie der schlicten Funktionen, Math. Z., 37(1933), 356-380.

Downloads

Published

2025-05-29

Issue

Section

Articles

Similar Articles

1-10 of 237

You may also start an advanced similarity search for this article.