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On some coefficient estimates for a class
of p-valent functions

Alexandrina Maria Proca and Dorina Răducanu

Abstract. In this paper, we consider a class of p-valent functions. For functions
in this class we find sharp estimates for their first three coefficients. Upper bound
for the second order Hankel determinant is also obtained.
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1. Introduction

Let A(p) denote the class of functions of the form

f(z) = zp +

∞∑
k=1

ap+kz
p+k (1.1)

defined on the open unit disk U = {z ∈ C : |z| < 1}.
Note that for p = 1 we obtain A(1) = A which is the class of analytic functions

of the form

f(z) = z +

∞∑
k=2

akz
k. (1.2)

Let P be the the well known Carathéodory class of functions consisting of func-
tions q such that

q(z) = 1 +

∞∑
n=1

cnz
n (1.3)

which are analytic in the unit disc U and satisfy <q(z) > 0, z ∈ U (see [2]).
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The Hankel determinant of a function f , for q ≥ 1, n ≥ 1 was defined by Pom-
merenke ( [12]), [13]), as

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q

...
... . . .

...
an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1).

For our discussion in this paper , we consider the second order Hankel determi-
nant for the case q = 2 and n = p+ 1

H2(p+ 1) =

∣∣∣∣ ap+1 ap+2

ap+2 ap+3

∣∣∣∣ = ap+1ap+3 − a2p+2.

Bounds for this determinant, for different classes of p-valent functions, has been
investigated by several authors, see [1], [4], [5], [10] to mention only a few.

In a recent paper, Gupta et al. [3] extended Marx-Strohhäcker result [9], [14], to
multivalent functions f ∈ A(p) (p ≥ 2), by finding β and γ such that

<
{

1 +
zf ′′(z)

f ′(z)

}
> α =⇒ <

√
f ′(z)

pzp−1
> β =⇒ <f(z)

zp
> γ, z ∈ U . (1.4)

Starting from Marx-Strohhäcker implication (1.4), we consider the following class of
p-valent functions.

Definition 1.1. A function f ∈ A(p) (p ≥ 1) is said to be in the class SQ(p) if and
only if

<

√
f ′(z)

pzp−1
> 0, z ∈ U . (1.5)

In this paper, for the class SQ(p), we obtain sharp estimates for the coefficients
ap+1, ap+2, ap+3. We also find an upper bound for the second Hankel determinant
H2(p+ 1).

In order to obtain our results we will need the next two lemmas.

Lemma 1.2. [[6], [7]] If the function p ∈ P is given by (1.3), then

|cn| ≤ 2, n ≥ 1

2c2 = c21 + x(4− c21) (1.6)

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)y (1.7)

for some x, y with |x| ≤ 1 and |y| ≤ 1.

The second lemma is a special case of a more general result due to Ohno and
Sugawa [11] (see also [8]).

Lemma 1.3. For some given real numbers A,B,C, let

Y (A,B,C) = max
z∈U

(|A+Bz + Cz2|+ 1− |z|2).
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If AC ≥ 0, then

Y (A,B,C) =


|A|+ |B|+ |C| , |B| ≥ 2(1− |C|)

1 + |A|+ B2

4(1− |C|)
, |B| < 2(1− |C|).

If AC < 0, then

Y (A,B,C) =


1− |A|+ B2

4(1− |C|)
, −4AC(C−2 − 1) ≤ B2 and |B| < 2(1− |C|)

1 + |A|+ B2

4(1 + |C|)
, B2 < min

{
4(1 + |C|)2,−4AC(C−2 − 1)

}
R(A,B,C), otherwise

where

R(A,B,C) =


|A|+ |B| − |C| , |C|(|B|+ 4|A|) ≤ |AB|
−|A|+ |B|+ |C| , |AB| ≤ |C|(|B| − 4|A|)

(|C|+ |A|)
√

1− B2

4AC
, otherwise.

2. Coefficient estimates

In this section we obtain sharp inequalities for the coefficients ap+1, ap+2 and
ap+3.

Theorem 2.1. Let f ∈ SQ(p) be given be (1.1). Then

|ap+1| ≤
4p

p+ 1
,

|ap+2| ≤
8p

p+ 2
,

|ap+3| ≤
12p

p+ 3
.

Proof. Since f ∈ SQ(p), we have that
√

f ′(z)
pzp−1 ∈ P. It results that there exists a

function q ∈ P such that √
f ′(z)

pzp−1
= q(z), z ∈ U . (2.1)

Equating the coefficients in (2.1), we obtain

ap+1 =
2p

p+ 1
c1,

ap+2 =
2p

p+ 2
(c2 +

c21
2

),

ap+3 =
2p

p+ 3
(c3 + c1c2).
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Since q ∈ P we have |c1| ≤ 2 and thus |ap+1| ≤
4p

p+ 1
. The inequality is sharp for

c1 = 2. In order to obtain |ap+2|, making use of Lemma 1.2 , we replace the coefficient
c2 from (1.6) and we get

ap+2 =
p

p+ 2
(2c21 + (4− c21)x), |x| ≤ 1.

Suppose now that c1 = c and 0 ≤ c ≤ 2. Then

|ap+2| =
p

p+ 2
|2c21 + (4− c21)x| ≤ p

p+ 2
(2c2 + 4− c2) ≤ 8p

p+ 2
.

The inequality is sharp for c = 2.

Since ap+3 =
2p

p+ 3
(c3+c1c2), making use of Lemma 1.2 and replacing the coefficients

c2 and c3, given by (1.6) and (1.7) respectively, we have

ap+3 =
p

p+ 3

[
3c3

2
+ 2cx(4− c2)− (4− c2)

cx2

2
+ (4− c2)(1− |x2|)y

]
.

In view of triangle inequality, after some calculations, we obtain

|ap+3| ≤
p(4− c2)

p+ 3

[
| 3c3

2(4− c2)
+ 2cx− cx2

2
|+ (1− |x2|)

]
.

To obtain the upper bound of |ap+3| we use Lemma 1.3 with

A =
3c3

2(4− c2)
, B = 2c, C = − c

2
.

It is easy to see that AC > 0 and −4AC(C−2 − 1) ≤ B2.
The inequality |B| < 2(1− |C|) holds true for c < 2

3 .

Thus, for the case c ∈ [0, 23 ), we have

|ap+3| ≤
p(4− c2)

p+ 3
Y (A,B,C) where Y (A,B,C) = 1− |A|+ B2

4(1− |C|)
.

By replacing A,B and C we obtain

Y (A,B,C) =
c3 + 6c2 + 8

2(4− c2)
,

which implies

|ap+3| ≤
p

2(p+ 3)
(c3 + 6c2 + 8).

Let ϕ(c) = c3 + 6c2 + 8, c ∈ [0, 23 ) with ϕ
′
(c) = 3c(c + 4). Since, ϕ

′
(c) ≥ 0, c ∈ [0, 23 )

we get ϕ(c) < 296
27 .

Therefore, if c ∈ [0, 23 ), we have |ap+3| ≤
148p

27(p+ 3)
.

We consider now the case 2
3 ≤ c ≤ 2 and we check the condition

B2 < min
{

4(1 + |C|2);−4AC(C−2 − 1)
}

(2.2)
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from Lemma 1.3, which is equivalent to

4c2 < min

{
4(1 + c+

c2

4
), 3c2

}
.

Hence, for c ∈ [
2

3
, 2] the inequality (2.2) is not satisfied. We check now the conditions

for R(A,B,C) from the same Lemma 1.3.

It is easy to obtain that |AB| ≤ |C|(|B| − 4|A|) for c ∈ [
2

3
,

2√
7

]. For c ∈ [
2

3
,

2√
7

] we

have Y (A,B,C) = R(A,B,C), where

R(A,B,C) =
10c− 4c3

4− c2
.

In this case,

|ap+3| ≤
p

p+ 3
(10c− 4c3).

Let µ(c) = 10c − 4c3, c ∈ [ 23 ,
2√
7
]. Then µ

′
(c) = 10 − 12c2. It follows that µ(c) is an

increasing function, so µ(c) ≤ µ( 2√
7
) =

108
√

7

49
, c ∈ [

2

3
,

2√
7

]. We obtain

|ap+3| ≤
p

p+ 3

108
√

7

49
.

Now, for c ∈ ( 2√
7
, 2] we get, |ap+3| ≤

p(4− c2)

p+ 3
R(A,B,C), where

R(A,B,C) = (|C|+ |A|)
√

1− B2

4AC
=

2 + c2

4− c2

√
16− c2√

3
.

Then,

|ap+3| ≤
p

p+ 3
(2 + c2)

√
16− c2√

3
.

We denote by η(c) = (c2 + 2)
√

16− c2, c ∈
(

2√
7
, 2
]
. Then

η′(c) =
3c(10− c2)√

16− c2
≥ 0, c ∈

(
2√
7

; 2

]
,

which shows that η(c) is an increasing function on
(

2√
7
; 2
]

and η(c) ≤ η(2) = 12
√

3.

Thus

|ap+3| ≤
12p

p+ 3
.

Finally, we get

|ap+3| ≤ max

{
148p

27(p+ 3)
;

108
√

7

49

p

p+ 3
;

12p

p+ 3

}
, p ≥ 1, c ∈ [0; 2]

which implies

|ap+3| ≤
12p

p+ 3
.
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The last inequality is sharp for c = 2.
Now, the proof of our theorem is completed. �

3. Second Hankel determinant

In this section we find an upper bound for the second order Hankel determinant

H2(p+ 1) = ap+1ap+3 − a2p+2.

Theorem 3.1. Let f ∈ SQ(p) be given be (1.1). Then

|H2(p+ 1)| ≤ 16p2

(p+ 1)(p+ 3)
.

Proof. Since f ∈ SQ(p), from the proof of Theorem 2.1, we have

ap+1 =
2p

p+ 1
c,

ap+2 =
2p

p+ 2
(c2 +

c2

2
),

ap+3 =
2p

p+ 3
(c3 + c2c).

Then

H2(p+ 1) =
4p2

(p+ 1)(p+ 3)
c(c3 + c2c)−

4p2

(p+ 2)2
(c2 +

c2

2
)

=
p2

(p+ 1)(p+ 2)2(p+ 3)
[4c2c2−c4−c4(p+1)(p+3)+4(p+2)2]cc3−4(p+1)(p+3)c22].

Making use of Lemma 1.2, we get

4c2c2 = 2c4 + 2c2(4− c2)x
4c22 = c4 + 2c2(4− c2)x+ (4− c2)2x2

4cc3 = c4 + 2c2(4− c2)x− c2(4− c2)x2 + 2(4− c2)c(1− |x|2)y,

where c ∈ [0, 2], and |x| ≤ 1, |y| ≤ 1.
After lengthy calculations, we obtain

|H2(p+ 1)| ≤ p2

(p+ 1)(p+ 3)
2c(4− c2)

{
A+Bx+ Cx2 + (1− |x|2)

}
,

where

A =
−c3(p2 + 2p)

2(p+ 2)2(4− c2)
< 0

B =
2c

(p+ 2)2
> 0

C = −c
2 + 4(p+ 1)(p+ 3)

2c(p+ 2)2
< 0.
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In order to obtain the upper bound of |H2(p + 1)|, we use Lemma 1.3 for the case
AC > 0. Since the inequality |B| < 2(1− |C|) is satisfied, then we have

Y (A,B,C) = 1 + |A|+ B2

4(1− |C|)

= 1+
c3

2(p+ 2)2(4− c2)

c2(p+ 2)2−2c(p2+4p)(p+2)2+4(p2 + 4p)(p+ 1)(p+ 3)− 16

c2 − 2c(p+ 2)2 + 4(p+ 1)(p+ 3)
.

It follows that

|H2(p+ 1)| ≤ p2

(p+ 1)(p+ 3)
2c(4− c2)Y (A,B,C)

=
2p2(4− c2)c

(p+ 1)(p+ 3)
+

p2c4

(p+ 1)(p+ 2)2(p+ 3)

u(c)

v(c)
,

where

u(c) = c2(p+ 2)2 − 2c(p2 + 4p)(p+ 2)2 + 4(p2 + 4p)(p+ 1)(p+ 3)− 16

and

v(c) = c2 − 2c(p+ 2)2 + 4(p+ 1)(p+ 3), c ∈ [0, 2], p ≥ 1.

We observe that u(2) = 0 and u(c) = (c− 2)[c− 2(p2 + 4p− 1)](p+ 2)2. Also v(2) = 0
and v(c) = (c− 2)[c− 2(p2 + 4p+ 3)].

It follows that

|H2(p+ 1)| ≤ 2p2(4− c2)c

(p+ 1)(p+ 3)
+

p2c4

(p+ 1)(p+ 3)

c− 2(p2 + 4p− 1)

c− 2(p2 + 4p+ 3)

=
p2

(p+ 1)(p+ 3)
c

[
2(4− c2) + c3

c− 2(p2 + 4p− 1)

c− 2(p2 + 4p+ 3)

]
=

p2

(p+ 1)(p+ 3)

{
2c(4− c2) + c4

[
1 +

8

c− 2(p2 + 4p+ 3)

]}
=

p2

(p+ 1)(p+ 3)
[f1(c) + 8f2(c)] ,

where f1(c) = 2c(4− c2) + c4 and f2(c) =
c4

c− 2(p2 + 4p+ 3)
, c ∈ [0, 2].

Since f
′

1(c) = 2(2c3−3c2+4) for c ∈ [0, 2], we have that f1(c) is an increasing function
and f1(c) ≤ f1(2) = 16.

Further f2
′(c) =

c3[3c− 8(p2 + 4p+ 3)]

[c− 2(p2 + 4p+ 3)]2
≤ 0, which shows that f2(c) is a decreasing

function on [0, 2] and f2(c) ≤ f2(0) = 0, c ∈ [0, 2].

Therefore

|H2(p+ 1)| ≤ 16p2

(p+ 1)(p+ 3)
.

The proof of theorem is now completed. �
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functions, Afr. Mat., 32(2021), 1421-1434.

[4] Hayami, T., Owa, S., Hankel determinant for p-valently starlike and convex functions of
order α, Gen. Math., 17(4)(2009), 29-44.

[5] Krisna, D.V., Ramreddy, T., Coefficient inequality for certain subclasses of p-valent
functions, Palest. J. Math., 4(1)(2015), 223-228.

[8] Li, M., Sugawa, T., A note on successive coefficients of convex functions, Comput. Meth-
ods Funct. Theory, 17(2017), 179-193.

[6] Libera, R.J., Z lotkiewicz, E.J., Early coefficients of the inverse of a regular convex func-
tion, Proc. Amer. Math. Soc., 85(2)(1982), 225-230.

[7] Libera, R.J., Z lotkiewicz, E.J., Coefficient bounds for the inverse of a function with
derivative in P, Proc. Amer. Math. Soc., 87(2)(1983), 251-257.

[9] Marx, A., Unteruchungen über schlicht Abbildungen, Math. Ann., 107(1932/33), 40-67.

[10] Noonan, J.W., Thomas, D.K., On the second Hankel determinant of arreally mean p-
valent functions, Trans. Amer. Soc., 223(1976), 337-346.

[11] Ohno, R., Sugawa, T., Coefficient estimates of analytic endomorphisms of the unit disk
fixing a point with applications to concave functions, Kyoto J. Math., 58(2)(2018), 227-
241.

[13] Pommerenke, Ch., On the Hankel determinants of univalent functions, Mathematika,
14(1967), 108-112.

[12] Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.

[14] Strohhäcker, E., Beiträge zur Theorie der schlicten Funktionen, Math. Z., 37(1933),
356-380.

Alexandrina Maria Proca
Transilvania University of Braşov,
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Faculty of Mathematics and Computer Sciences,
50, Iuliu Maniu Street, 500091, Braşov, Romania
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