General inequalities related Hermite-Hadamard inequality for generalized fractional integrals

Havva Kavurmacı-Önalan, Erhan Set, Abdurrahman Gözpınar


In this article, we first establish a new general integral identity for differentiable functions with the help of generalized fractional integral operators introduced by Raina <cite>raina</cite> and Agarwal et al. <cite>agarwal</cite>. As a second, by using this identity we obtain some new fractional Hermite-Hadamard type inequalities for functions whose absolute values of first derivatives are convex. Relevant connections of the results presented here with those involving Riemann-Liouville fractional integrals are also pointed out.


Hermite-Hadamard inequality; Riemann-Liouville fractional integral; fractional integral operator.

Full Text:



Set : E. Set, M.A. Noor, M.U. Awan and A. Gözpınar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Ineq. Appl., 2017:169 (2017),

Set-1 : E. Set and A. Gözpınar, Some new inequalities involving generalized fractional integral operators for several class of functions, AIP Conf. Proc., 1833(1) (2017), p:020038.

Set-2 : E. Set and A. Gözpınar, Hermite-Hadamard type inequalities for convex functions via generalized fractional integral operators,

Set-3 : E. Set, J. Choi, B. Çelik, Certain Hermite-Hadamard type inequalities involving generalized fractional integral operators, RACSAM, (2017), DOI 10.1007/s13398-017-0444-1.

Set-4 : E. Set, M.Z. Sarıkaya, M.E. Özdemir, H. Yıldırım, The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Statis. Inform. 10(2) (2014) 69--83.

Set-5 : E. Set, I. Işcan, F. Zehir, On some new inequalities of Hermite-Hadamard type involving harmonically convex functions via fractional integrals, Konuralp J. Math., 3(1) (2015) 42--55.

Set-6 : E. Set, B. Çelik, Fractional Hermite-Hadamard type inequalities for quasi-convex functions, Ordu Univ. J. Sci. Tech., 6(1) (2016), 137-149.

Set-7 : E. Set, A.O. Akdemir, B. Çelik, On Generalization of Fejér Type Inequalities via fractional integral operator, Filomat, accepted.

Set-8 : E. Set, B. Çelik, Generalized fractional Hermite-Hadamard type inequalities for m-convex and (α, m)- convex functions, Commun. Fac. Sci. Univ. Ank. Series A1, 67(1) (2018), 351-362.

Set-9 : E. Set, B. Çelik, On generalizations related to the left side of Fejer's inequality via fractional integral operator, Miskolc Math. Notes, accepted.

Usta : F. Usta, H. Budak, M.Z. Sarıkaya, E. Set, On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators, Filomat, accepted.

Yaldiz : H. Yaldız, M.Z. Sarıkaya, On the Hermite-Hadamard type inequalities for fractional integral operator, Submitted.

noor : M.A. Noor, K.I. Noor, M.U. Awan, S. Khan, Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions, Appl. Math. Inf. Sci. 8(6) (2014), 2865--2872.

iqbal : M. Iqbal, M.I. Bhatti, K. Nazeer, Generalization of ineqaulities analogous to Hermite-Hadamard inequality via fractional integrals, Bull. Korean Math. Soc., 52(3) (2015), 707-716.

awan : M.U. Awan, M.A. Noor, T-S. Du, K.I. Noor, New refinements of fractional Hermite--Hadamard inequality, RACSAM, (2017), DOI 10.1007/s13398-017-0448-x.

Gorenflo : R. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, Fractals and fractional calculus in continuum mechanics (Udine,1996), 223--276, CISM Courses and Lectures, 378, Springer, Vienna, 1997.

raina : R.K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2) (2005), 191-203.

agarwal : R.P. Agarwal, M.-J. Luo and R.K. Raina, On Ostrowski type inequalities, Fasc. Math., 56(1) (2016), 5-27.

Dragomir : S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.

Kirmaci : U. S. Kirmaci,Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147(1) (2004), 137--146.



  • There are currently no refbacks.