Coupled fixed point theorems for rational type contractions
Keywords:
fixed point, ordered metric space, rational type contraction, coupled fixed point, data dependence, well-posedness, Ulam-Hyers stability, limit shadowing property.Abstract
In this paper, we will consider the coupled fixed problem in $b$-metric space for single-valued operators satisfying a generalized contraction condition of rational type. First part of the paper concerns with some fixed point theorems, while the second part presents a study of the solution set of the coupled fixed point problem.
More precisely, we will present some existence and uniqueness theorems for the coupled fixed point problem, as well as a qualitative study of it (data dependence of the coupled fixed point set, well-posedness, Ulam-Hyers stability and the limit shadowing property of the coupled fixed point problem) under some rational type contraction assumptions on the mapping.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.