Continuity and maximal quasimonotonicity of normal cone operators
DOI:
https://doi.org/10.24193/subbmath.2022.1.03Keywords:
quasimonotone operator, maximal quasimonotone operator, cone upper semicontinuity, upper sign continuity, quasiconvex functionAbstract
In this paper we study some properties of the adjusted normal cone operator of quasiconvex functions. In particular, we introduce a new notion of maximal quasimotonicity for set-valued maps different from similar ones recently appeared in the literature, and we show that it is enjoyed by this operator. Moreover, we prove the $s\times w^*$ cone upper semicontinuity of the normal cone operator in the domain of $f$ in case the set of global minima has non empty interior.
References
begin{thebibliography}{9}
bibitem{AlHadSha2018}
Al-Homidan, S., Hadjisavvas, N., Shaalan, L., emph{Tranformation of quasiconvex functions to eliminate local minima}, J. Optim. Theory Appl. textbf{177}, 93-105 (2018) %
bibitem {AlipBorder2006}Aliprantis, C.D., Border, K., emph{Infinite
Dimensional Analysis}, Springer-Verlag Berlin Heidelberg (2006).
bibitem {AubFr-90}Aubin, J.P., Frankowska, H., emph{Set-Valued Analysis},
Birkh"{a}user (1990).
bibitem {Aussel98}Aussel, D., emph{Subdifferential Properties of Quasiconvex and
Pseudoconvex Functions: Unified Approach}, J. Optim. Theory Appl. textbf{97}, (1998)
-45.
bibitem {AusEbe2013}Aussel, D., Eberhard, A., emph{Maximal quasimonotonicity
and dense single-directional properties of quasimonotone operators}, Math.
Program. Ser. B textbf{139} (2013), 27-54.
bibitem {AusCorLass1994}Aussel, D., Corvellec, J.-N., Lassonde, M.,
emph{Subdifferential characterization of quasiconvexity and convexity}, J. Convex
Anal. textbf{1} (1994), 195-201.
bibitem {AusHad2005}Aussel, D., Hadjisavvas, N., emph{Adjusted sublevel sets,
normal operator, and quasiconvex programming}, SIAM J. Optim. textbf{16} (2005),
-367.
bibitem{BorCrou1990}
Borde, J., Crouzeix, J.-P., emph{Continuity properties of the normal cone to the level sets of a quasiconvex function},
J. Optim. Theory Appl. textbf{66} (1990), 415-429.
bibitem{Bor2010} Borwein, J.M, emph{Fifty years of maximal monotonicity}, Optim. Lett. textbf{4} (2010), 473-490.
bibitem{BorLew1992} Borwein, J.M, Lewis, A.S., emph{Partially finite convex programming, Part I: Quasi relative interiors and duality theory}, Math. Program. textbf{57} (1992), 15-48.
bibitem {BueCotri2019}Bueno, O., Cotrina, J., emph{On maximality of
quasimonotone operators}, Set-Valued Var. Anal. textbf{27} (2019), 87-101.
bibitem {Clar83}Clarke, F.H., emph{Optimization and Nonsmooth Analysis}, Wiley
Interscience, New York (1983).
bibitem{Csetnek2010}Csetnek, E.R., emph{Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators}, PhD Thesis, Logos Verlag, Berlin (2010).
bibitem {Had2003}Hadjisavvas, N., emph{Continuity and maximality properties of
pseudo-monotone operators}, J. Convex Anal. textbf{178} (2003), 459-469.
bibitem {HuPap1997}Hu, S., Papageorgiou, S., emph{Handbook of Multivalued
Analysis, Vol. I: Theory}, Kluwer Academic Publisher, Norwell, MA (1997).
bibitem {KarScha1990}
Karamardian, S., Schaible, S., emph{Seven kinds of monotone maps}, J. Optim. Theory Appl. textbf{66} (1990), 37–46.
bibitem {MLSvai05} Mart'{i}nez-Legaz, J.-E., Svaiter, B. F., emph{Monotone operators representable by l.s.c. convex functions}, Set-Valued Anal. textbf{13} (2005), 21–46.
bibitem {Shir-07}Schirotzek, W., emph{Nonsmooth Analysis}, Springer-Verlag Berlin
Heidelberg (2007).
end{thebibliography}
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.