Asymptotic behavior of generalized CR-iteration algorithm and application to common zeros of accretive operators
DOI:
https://doi.org/10.24193/subbmath.2024.2.10Keywords:
Fixed point, CR− iterative algorithm, nonself QNEMsAbstract
The purpose of this study is to provide a generalized CR-iteration algorithm for finding common fixed points (CFPs) for nonself quasi-nonexpansive mappings (QNEMs) in a uniformly convex Banach space. The suggested algorithm’s convergence analysis is analyzed in uniformly convex Banach spaces.
References
Agarwal, R.P., O'Regan, D., Sahu, D.R.,
Fixed Point Theory for Lipschitzian-Type Mappings With Applications,
Springer, New York, 2009.
Babu, G.V.R., Satyanarayana, G.,
Convergence of $CR-$iteration procedure for a nonlinear quasi contractive
map in convex metric spaces,
Commun. Nonlinear Anal., textbf{7}(2019), 82-88.
Bauschke, H.H., Combettes, P.L.,
Convex Analysis and Monotone Operator Theory in Hilbert Spaces,
Springer, Berlin, 2011.
Browder, F.E.,
Semicontractive and semiaccretive nonlinear mappings in Banach spaces,
Bull. Amer. Math. Soc. (N.S), text{74}(1968), 660-665.
Chang, R., Kumar, V., Kumar, S., Chan, C.K.,
Strong convergence of a new three step iterative scheme in Banach spaces,
Am. J. Comput. Math., text{2}(2012), 345-357.
Chang, S.S., Wang, L., Joseph Lee, H.W., Chan, C.K.,
Strong and convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces,
Fixed Point Theory Appl., {bf 122}(2013), 1-16.
Cioranescu, I.,
Geometry of Banach Spaces, Duality Mapping and Nonlinear Problems,
Kluwer, Amsterdam, 1990.
Ishikawa, S.,
Fixed points by a new iteration method,
Proc. Amer. Math. Soc., text{44}(1974), 147-150.
Karakaya, V., G"ursoy, F., Dogan, K., Ert"urk, M.,
Data dependence results for multistep and $CR-$iterative schemes in the class of contractive-like operators,
Abstr. Appl. Anal., text{2013}(2013), 1-7.
Kim, J.K., Tuyen, T.M.,
Approximation common zero of two accretive operators in Banach spaces,
Appl. Math. Comput., text{283}(2016), 265-281.
Kwan, Y.C., Shahid, A.A., Nazeer, W., Abbas, M., Kang, S.M.,
Fractal generation via $CR-$iteration scheme with s-convexity,
IEEE Access., text{7}(2019), 69986-69997.
Li, D., Shahid, A.A., Tassaddiq, A., Khan, A., Guo, X., Ahmad, M.,
CR-Iteration in generation of antifractals with s-convexity,
IEEE Access., text{8}(2020), 61621-61630.
Mann, W.R.,
Mean value methods in iteration,
Proc. Amer. Math. Soc., text{6}(1953), 506-510.
Martinet, B.,
Regularisation d'in'equations variationelles par approximations successives,
Rev. Fr. Inform. Rech. Oper., {bf 4}(1970), 154-158.
Martinet, B.,
Determination approch'ee d'un point fixe d'une
application pseudo-contractante,
C.R. Math. Acad. Sci. Paris., text{274}(1972), 163-165.
Picard, E.,
M'emoire sur la th'eorie des 'equations aux deriv'es partielles et la method des approximations successive,
J. Math. Pures et Appl., text{6}(1890), 145-210.
Rockafellar, R.T.,
Monotone operators and the proximal point algorithm,
SIAM J. Control Optim., text{14}(1976), 877-898.
Rockafellar, R.T.,
Augmented Lagrangians and applications of the proximal point algorithm in convex
programming,
Math. Oper. Res., text{1}(1976), 97-116.
Sahu, D.R.,
Applications of the S-iterative algorithm to constrained minimization problems and split
feasibility problems,
Fixed Point Theory, text{12}(2011), no. 1, 187-204.
Sahu, D.R., Ansari, Q.H., Yao, J.C.,
The prox-Tikhonov-like forward-backward method and applications,
Taiwanese J. Math., text{19}(2015), 481-503.
Xu, H.K.,
Inequalities in Banach spaces with applications,
Nonlinear Anal., text{16}(1991), 1127-1138.
Xu, H.K.,
Iterative algorithms for nonlinear operators,
J. Lond. Math. Soc., text{66}(2002), no. 2, 240-256.
Xu, H.K.,
Strong convergence of an iterative method for nonexpansive and accretive operators,
J. Math. Anal. Appl., text{314}(2006), 631-643.
Zegeye, H., Shahzad, N.,
Strong convergence theorems for a common zero of a finite family of maccretive
mappings, Nonlinear Anal., text{66}(2007), 1161-1169.
Zhang, Q.N., Song, Y.S.,
Halpern type proximal point algorithm of accretive operators,
Nonlinear Anal., text{75}(2012), 1859-1868.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.