Article no.4

Stability of the Equilibria of a Dynamic System Modeling Stem Cell TransplantationResearch Paper, November 18, 2019 / Lorand Gabriel Parajdi

Published in Springer, Ricerche di Matematica 69, 579-601, DOI: 10.1007/s11587-019-00473-9,  2020, published online in 2019.

  The full paper is available on Springer, Ricerche di Matematics website: https://link.springer.com/article/10.1007%2Fs11587-019-00473-9

Author: Lorand Gabriel Parajdi Department of Mathematics, “Babeş–Bolyai” University, Cluj-Napoca, Romania

Abstract: This paper provides a complete analysis of the stability of the steady-states for a three-dimensional system modeling cell dynamics after bone marrow transplantation in chronic myeloid leukemia. There are given results for both chronic and accelerated-acute phases of the disease.

Subject Classification: 37C75, 37N25, 34D23

Keywords: Stability, Dynamical system, Numerical simulations, Mathematical modeling.

Cite As: Parajdi, L.G. Stability of the equilibria of a dynamic system modeling stem cell transplantation. Ricerche mat 69, 579-601 (2020). https://doi.org/10.1007/s11587-019-00473-9

References:
1. Cucuianu, A., Precup, R.: A hypothetical–mathematical model of acute myeloid leukemia pathogenesis. Comput. Math. Methods Med. 11, 49–65 (2010). [Article]

2. De Conde, R., Kim, P.S., Levy, D., Lee, P.P.: Post-transplantation dynamics of the immune response to chronic myelogenous leukemia. J. Theor. Biol. 236, 39–59 (2005). [Article]

3. Dingli, D., Michor, F.: Successful therapy must eradicate cancer stem cells. Stem Cells 24, 2603–2610 (2006). [Article]

4. England, J.P., Krauskopf, B., Osinga, H.M.: Computing two-dimensional global invariant manifolds in slow-fast systems. Int. J. Bifurc. Chaos 17(3), 805–822 (2007). [Article]

5. Francomano, E., Hilker, F.M., Paliaga, M., Venturino, E.: An efficient method to reconstruct invariant manifolds of saddle points. Dolomites Res. Notes Approx. 10, 25–30 (2017). [Google Scholar]

6. Gradshteym, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000). [Google Scholar]

7. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983). [Google Scholar]

8. Heck, A.: Introduction to Maple, 3rd edn. Springer, New York (2003). [Google Scholar]

9. Ilyin, V.A., Poznyak, E.G.: Analytic Geometry. Mir Publishers, Moscow (1984). [Google Scholar]

10. Kim, P.S., Lee, P.P., Levy, D.: Mini-Transplants for Chronic Myelogenous Leukemia: A Modeling Perspective, Biology and Control Theory: Current Challenges. Lecture Notes in Control and Information Sciences, vol. 357. Springer, Berlin (2007). [Google Scholar]

11. Krauskopf, B., Osinga, H.: Two-dimensional global manifolds of vector fields. Chaos 9(3), 768–774 (1999). [Article]

12. Marciniak-Czochra, A., Stiehl, T.: Mathematical models of hematopoietic reconstitution after stem cell transplantation. In: Bock, H., Carraro, T., Jaeger, W., Koerkel, S. (eds.) Model Based Parameter Estimation: Theory and Applications, pp. 191–206. Springer, Heidelberg (2011). [Google Scholar]

13. Mehta, J., Powles, R., Treleaven, J., Kulkarni, S., Horton, C., Singhal, S.: Number of nucleated cells infused during allogeneic and autologous bone marrow transplantation: an important modifiable factor influencing outcome. Blood 90(9), 3808–10 (1997). [Article]

14. Neiman, B.: A mathematical model of chronic myelogenous leukemia, Oxford University (2000). [Thesis]

15. Parajdi, L.G., Precup, R.: Analysis of a planar differential system arising from hematology. Stud. Univ. Babeş-Bolyai Math. 63, 235–244 (2018). [Article]

16. Parajdi, L.G., Precup, R., Bonci, E.-A., Tomuleasa, C.: A mathematical model of the transition from the normal hematopoiesis to the chronic and acceleration-acute stages in myeloid leukemia. Mathematics 8(3):376 (2020). [Article]

17. Precup, R.: Mathematical understanding of the autologous stem cell transplantation. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 10, 155–167 (2012). [Google Scholar]

18. Precup, R., Arghirescu, S., Cucuianu, A., Serban, M.: Mathematical modeling of cell dynamics after allogeneic bone marrow transplantation. Int. J. Biomath. 5(2), 1–18 (2012). [Article]

19. Precup, R., Şerban, M.A., Trif, D., Cucuianu, A.: A planning algorithm for correction therapies after allogeneic stem cell transplantation. J. Math. Modell. Algorithm 11, 309–323 (2012). [Article]

20. Precup, R., Şerban, M.A., Trif, D.: Asymptotic stability for a model of cellular dynamics after allogeneic bone marrow transplantation. Nonlinear Dynamics Syst. Theory 13, 79–92 (2013). [Google Scholar]

21. Séroul, R.: Programming for Mathematicians. Springer, Berlin (2000). [Google Scholar]

22. Slavin, S., Nagler, A., Naparstek, E., et al.: Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 91(3), 756–63 (1998). [Article]

23. Stiehl, T., Ho, A., Marciniak-Czochra, A.: The impact of CD34+ cell dose on engraftment after SCTs: personalized estimates based on mathematical modeling. Bone Marrow Transpl. 49, 30–37 (2014). [Article]

24. Trif, D.: LaguerreEig (2011).  [Matlab Package]

25. Vincent, P.C., Rutzen-Loesevitz, L., Tibken, B., Heinze, B., Hofer, E.P., Fliedner, T.M.: Relapse in chronic myeloid leukemia after bone marrow transplantation: biomathematical modeling as a new approach to understanding pathogenesis. Stem Cells 17, 9–17 (1999). [Article]