Certain class of m-fold functions by applying Faber polynomial expansions
DOI:
https://doi.org/10.24193/subbmath.2021.3.07Keywords:
m-fold symmetric bi-univalent functions, Coefficient estimates, Faber polynomial expansionsAbstract
In this paper, we introduce new class $\Sigma_{m}(\mu,\lambda,\gamma,\beta)$ of $m$-fold symmetric bi-univalent functions. Furthermore, we use the Faber polynomial expansions to find upper bounds for the general coefficients $|a_{mk+1}|(k \geqq 2)$ of functions in the class $\Sigma_{m}(\mu,\lambda,\gamma,\beta)$. Moreover, we obtain estimates for the initial coefficients $|a_{m+1}| $ and $|a_{2m+1}|$ for functions in this class. The results presented in this paper would generalize and improve some recent works.References
bibitem{Airault1} Airault, H., Bouali, A., emph{Differential calculus on the Faber polynomials},
Bull. Sci. Math., textbf{130}(2006), 179-222.
bibitem{Airault2} Airault, H., Ren, J., emph{An algebra of differential operators and generating functions on the set of univalent functions}, Bull. Sci. Math. textbf{26}(2002), no. 5, 343-367.
bibitem{Altinkaya} Altinkaya, c{S}., Yalc{c}in, S., emph{Coefficient bounds for two new subclasses of $m$-fold symmetric bi-univalent functions}, Serdica Math. J., textbf{42}(2016), 175-186.
bibitem{Bouali} Bouali, A., emph{Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions}, Bull. Sci. Math.,
textbf{130}(2006), no. 1, 49-70.
bibitem{Brannan} Brannan, D. A., Taha, T. S., emph{On Some classes of bi-univalent functions},
Stud. Univ. Babec{s}-Bolyai Math., textbf{31}(1986), no. 2, 70-77.
bibitem{Caglar} c{C}au{g}lar, M., Orhan, H., Yau{g}mur, N., emph{Coefficient bounds for new subclasses of bi-univalent functions},
Filomat, textbf{27}(2013), no. 7, 1165-1171.
bibitem{Duren}Duren, P. L. , emph{Univalent functions}, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
bibitem{Eker1} Eker, S. S., emph{Coefficient bounds for subclasses of $m$-fold symmetric bi-univalent functions}, Turkish J. Math.,
textbf{40}(2016), no. 3, 641-646.
bibitem{Fab} Faber, G., emph{$ddot{U}$ber polynomische Entwickelungen}, Math. Ann., textbf{57}(1903), no. 3, 389-408.
bibitem{Frasin} Frasin, B. A., Aouf, M. K., New subclasses of bi-univalent functions, Appl. Math. Lett., textbf{24}(2011), 1569-1573.
bibitem{Jahangiri1} Hamidi, S. G., Jahangiri, J. M., emph{Unpredictability of the coefficients of $m$-fold symmetric bi-starlike functions},
Internat. J. Math., textbf{25}(2014). no. 7, Art. ID 1450064, 8 pages.
bibitem{Jahangiri} Jahangiri, J. M., Hamidi, S. G., emph{Faber polynomial coefficient estimates for analytic bi-bazlevic{c} functions},
Mat. Vesnik, {bf 67}(2015), no. 2, 123-129.
bibitem{Jahangiri2} Jahangiri, J. M., Hamidi, S. G., emph{Coefficient estimates for certain classes of bi-univalent functions},
Int. J. Math. Math. Sci., textbf{2013}, Art. ID 190560, 4 pages.
bibitem{Koepf} Koepf, W., emph{Coefficients of symmetric functions of bounded boundary rotation}, Proc. Amer. Math. Soc.,
textbf{105}(1989), no. 2, 324-329.
bibitem{Po} Pommerenke, Ch., emph{Univalent Functions}, Vandenhoeck and Ruprecht, Gottingen, 1975.
bibitem{Srivastava1} Srivastava, H. M., Bansal, D., emph{Coefficient estimates for a subclass of analytic and bi-univalent functions},
J. Egyptian Math. Soc., textbf{23}(2015), 242-246.
bibitem{Srivastava4} Srivastava, H. M., Gaboury, S., Ghanim, F., emph{Coefficient estimates for some general subclasses of analytic and bi-univalent functions}, Afr. Mat., textbf{28}(2017), 693-706.
bibitem{Srivastava7}Srivastava, H. M., Mishra, A. K., Gochhayat, P., emph{Certain subclasses of analytic and bi-univalent functions},
Appl. Math. Lett., textbf{23}(2010), 1188-1192.
bibitem{Srivastava8} Srivastava, H. M., Sivasubramanian, S., Sivakumar, R., emph{Initial coefficient bounds for a subclass of $m$-fold symmetric bi-univalent functions}, Tbilisi Math. J., textbf{7}(2014), 1-10.
bibitem{Todo} Todorov, P. G., emph{On the Faber polynomials of the univalent functions of class $Sigma$}, J. Math. Anal. Appl.,
textbf{162}(1991), no. 1, 268-276.
bibitem{QH} Xu, Q.-H., Gui, Y.-C., Srivastava, H. M., emph{Coefficient estimates for a Certain subclass of analytic and bi-univalent functions}, Appl. Math. Lett., textbf{25}(2012), 990-994.
bibitem{Q1} Xu, Q.-H., Xiao, H.-G., Srivastava, H. M., emph{A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems}, Appl. Math. Comput., textbf{218}(2012), no. 23, 11461-11465.
bibitem{Zireh} Zireh, A., Salehian, S., emph{On the certain subclass of analytic and bi-univalent functions defined by convolution}, Acta Univ. Apulensis Math. Inform., textbf{44}(2015), 9-19.
Downloads
Additional Files
- Certain class of $m$-fold functions by applying Faber polynomial expansions
- Certain class of $m$-fold functions by applying Faber polynomial expansions
- Certain class of $m$-fold functions by applying Faber polynomial expansions
- Certain class of $m$-fold functions by applying Faber polynomial expansions
- Certain class of m-fold functions by applying Faber polynomial expansions
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.