Coefficient estimates for a subclass of meromorphic bi-univalent functions defined by subordination
DOI:
https://doi.org/10.24193/subbmath.2020.1.05Keywords:
Coefficient estimates, Faber polynomial expansion, Meromorphic functions, SubordinateAbstract
In this work, we use the Faber polynomial expansion by a new method to find
upper bounds for $\left\vert b_{n}\right\vert $ coefficients for meromorphic
bi-univalent functions class $\Sigma ^{\prime }$ which is defined by
subordination.
Further, we generalize and improve some of the previously
published results.
References
bibitem{Ai1} Airault, H., Remarks on Faber polynomials, textit{Int. Math.Forum.} 3 (2008), 449--456.
bibitem{Ai} Airault, H., and Bouali A, Differential calculus on the Faber
polynomials, textit{Bull. Sci. Math.} 130 (2006), 179--222.
bibitem{Air} Airault, H., Ren, J., An algebra of differential operators and
generating functions on the set of univalent functions, textit{Bull. Sci.
Math.} 126 (2002), 343--367.
bibitem{A} Ali, R. M., Lee, S. K., Ravichandran, V., Subramaniam, S., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, textit{Appl. Math. Lett.} 25 (2012), 344--351.
bibitem{Fi} Ali, M. F., Vasudevarao, A., On coefficient estimates of negative powers and inverse coefficients for certain starlike functions, textit{ Proc. Math. Sci.} 127 (2017), 449--462.
bibitem{Bo} Bouali, A., Faber polynomials, Cayley-Hamilton equation andNewton symmetric functions, textit{Bull. Sci. Math.} 130 (2006),
--70.
bibitem{Du} Duren, P. L., Univalent Functions, Grundlehren der Mathematischen
Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and
Tokyo, 1983.
bibitem{Fa} Faber, G., "{U}ber polynomische Entwickelungen, textit{Math.
Ann.} 57 (1903), 389--408.
bibitem{Ha} Halim, S. A., Hamidi, S. G., Ravichandran, V., Coefficient estimates
for meromorphic bi-univalent functions, arXiv:1108.4089v1 [math.CV](2011).
bibitem{Ham} Hamidi, S. G., Halim, S. A., Jahangiri, J. M., Coefficient estimates
for a class of meromorphic bi-univalent functions, textit{C. R. Math. Acad.
Sci. Paris.} 351 (2013) 349-352.
bibitem{SSJ} Hamidi, S. G., Halim, S. A., Jahangiri, J. M., Faber polynomial
coefficient estimates for meromorphic bi-starlike functions, textit{Int. J.
Math. Math. Sci.} Art. ID 498159 (2013), 4p.
bibitem{Ha2} Hamidi, S. G., Jahangiri, J. M., Faber polynomial coefficients of
bi-subordinate functions, textit{C. R. Math. Acad. Sci. Paris.} 354
(2016), 365--370.
bibitem{HTJ} Hamidi, S. G., Janani, T., Murugusundaramoorthy, G., Jahangiri, J.
M., Coefficient estimates for certain classes of meromorphic bi-univalent
functions, textit{C. R. Math. Acad. Sci. Paris.} 352 (2014),
--282.
bibitem{Jah} Jahangiri, J. M., Hamidi., S. G., Coefficient estimates for
certain classes of bi-univalent functions, textit{Int. J. Math. Math. Sci.}
Art. ID 190560 (2013), 4p.
bibitem{Ja} Jahangiri, J. M., Hamidi, S. G., Halim, S. A., Coefficients of
bi-univalent functions with positive real part derivatives, textit{Bull.
Malays. Math. Sci. Soc.} 37 (2014), 633--640.
bibitem{KM} Kapoor, G. P., Mishra, A. K., Coeffcient estimates for inverses of
starlike functions of positive order, textit{J. Math. Anal. Appl.}
(2007), 922--934.
bibitem{Ku} Kubota, Y., Coeffcients of meromorphic univalent functions,
textit{Kodai Math. Sem. Rep.} 28 (1976/77), 253--261.
bibitem{Ma} Ma, W., Minda, D., A unified treatment of some special classes
of univalent functions, in: Proceedings of the conference on complex
Analysis, Z. Li, F. Ren, L. Lang and S. Zhang (eds), Int. Press (1994),
--169.
bibitem{Pa} Panigrahi, T., Coefficient bounds for certain subclasses of
meromorphic and bi-univalent functions, textit{Bull. Korean Math. Soc.}
(2013), 1531--1538.
bibitem{Ro} Robertson, M. I. S., On the theory of univalent functions, textit{%
Ann. Math.} 37 (1936), 374--408.
bibitem{Sch} Schober, G., Coeffcients of inverses of meromorphic univalent
functions, textit{Proc. Amer. Math. Soc.} 67 (1977), 111--116.
bibitem{Sc} Schiffer, M., Sur un probl'{e}me dextr'{e}mum de la repr'{e}%
sentation conforme, textit{Bull. Soc. Math. France.} 66 (1938),
--55.
bibitem{Sp} Springer, G., The coeffcient problem for schlicht mappings of the
exterior of the unit circle, textit{Trans. Amer. Math. Soc.} 70
(1951), 421--450.
bibitem{Zi1} Zireh, A., Analouei Adegani, E., Bulut, S., Faber polynomial
coefficient estimates for a comprehensive subclass of analytic bi-univalent
functions defined by subordination, textit{Bull. Belg. Math. Soc. Simon
Stevin.} 23 (2016), 487--504.
bibitem{Zi2} Zireh, A., Analouei Adegani, E., Bidkham, B., Faber polynomial
coefficient estimates for subclass of bi-univalent functions defined by
quasi-subordinate, Mathematica Slovaca., 68 (2018) 369--378.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.