
Behavioral Design Patterns Used in Data Structures

Implementation

Niculescu Virginia
Department of Computer Science

Babeş-Bolyai University, Cluj-Napoca
email address: vniculescu@cs.ubbcluj.ro

November, 2005

Abstract

Design patterns may introduce a new perspective on the traditional subject of data structures.
They introduce more flexibility and reusability in data structures implementation and use. This
analysis shows that design patterns could bring important advantages in basic fields of Computer
Science, too. Beside the advantages brought for data structures, presenting them in this perspec-
tive represents also a simple and efficient modality to introduce design patterns in early courses of
computer science. We analyze in this paper behavioral design patterns that can be used for data
structures implementation, and their advantages. Examples that illustrate the impact of the design
patterns in this context are presented.

Keywords: data structures, design patterns, genericity.

1 Introduction

Data structures [4, 10] represent an old issue in the Computer Science field. By introducing the concept of
abstract data type, data structures could be defined in a more accurate and formal way. A step forward
has been done on this subject with object oriented programming [1]. Object oriented programming
allow us to think in a more abstract way about data structures. Based on OOP we may define not
only generic data structures by using polymorphism or templates, but also to separate definitions from
implementations of data structures by using interfaces.

We may start from the definition of a data structure: A data structure is a group of data/elements,
which has an organization defined by a structure and by a specific set of operations. For each data
structure an Abstract Data Type may be defined: the domain describes the structure and the elements’
shape, and the operations define the behavior. Interfaces that describe the types could be defined for
each data structure; they describe only the operations, but the structures are implied by them.

Design patterns may move the things forward, and introduce more flexibility and reusability for data
structures. We intend to present the advantages of using design pattern in data structures implementation
into a serie of three articles. The decision to split the presentation has been made in order to be able to
give examples and explanations. In the first article we will discuss about behavioural design patters, in
the second one the analysis will be done on structural design patterns, and the last will treat creational
design patterns.

It is not our intention to present an exhaustive study. We present some examples that illustrate
the impact of design patterns on the implementation of data structures, how they could increase the
genericity and flexibility.

UML diagrams [2] are used in order to facilitate the examples understanding. Other examples could
be also analyzed.

1

Figure 1: Iterator design pattern.

2 Behavioral Design Patterns Used for Data Structures Imple-
mentation

2.1 Iterator

Iterator design pattern [3] provides a way to access the elements of an aggregate object sequentially
without exposing its underlying representation.

The classes and/or objects participating in this pattern are:

• Iterator defines an interface for accessing and traversing elements.

• ConcreteIterator implements the Iterator interface, and keeps track of the current position in the
traversal of the aggregate.

• Aggregate (AbstractContainer) defines an interface for creating an Iterator object

• ConcreteAggregate (Container) implements the Iterator creation interface to return an instance of
the proper ConcreteIterator.

The Iterator design pattern is maybe the first design pattern that has been used for data structures.
Its advantages are so important such that probably now there is no data structures library that does
not use it. For each container (aggregate object) we may define an iterator class which implements the
general interface Iterator.

The key idea in this pattern is to take the responsibility for access and traversal out of the container
object and put it into an iterator object. An iterator object is responsible for keeping track of the current
element; it knows elements have been traversed already. An iterator allows us to access an aggregate
object’s content without exposing its internal representation, but also support multiple traversals, and
provide uniform interface for traversing different containers (polymorphic iteration).

Iterator has many implementation variants and alternatives. Based on who control the iteration we
may classify iterators as external iterator, when the client controls the iteration, and internal iterators
when the iterator controls it. If we consider who defines the traversal algorithm, when the container
defines it and use the iterator to store just the state of the iteration, we have a cursor, since it merely
points to the current position in the container (a well known example is a list with cursor).

An iterator is consider to be robust if ensures that insertions and removals do not interfere with
traversal, and it does it without copying the container.

2

Figure 2: Template Method design pattern.

An iterator can be viewed as an extension of the container that created it. The iterator and the
container are tightly coupled.

2.2 Template Method

Template Method design pattern defines the skeleton of an algorithm in an operation, deferring some
steps to subclasses. Template Method lets subclasses redefine certain steps of an algorithm without
changing the algorithm’s structure [3] .

The classes and/or objects participating in this pattern are:

• AbstractClass defines abstract primitive operations that concrete subclasses define to implement
steps of an algorithm implements a template method defining the skeleton of an algorithm. The
template method calls primitive operations as well as operations defined in AbstractClass or those
of other objects.

• ConcreteClass implements the primitive operations ot carry out subclass-specific steps of the
algorithm

The following example is closely related to iterators. Based on iterators, many generic operations for
containers can be defined. The example considers the application of a specific operation to the elements
of a container. For example, we need to print the elements of a container, or we need to transform
all the elements of a container based on the same rule, etc. For implementing this, an abstract class
OperationOnStructure could be defined, as it is showed in the Figure 3. The method applyOperation
is the template method, and operation is the abstract method that is defined in the subclasses. Using
these classes it is possible to print a list, or a binary tree, or to square the elements of an list of integers,
etc.

This approach is good if all the objects have the same type since a cast operation is done inside
the concrete operations. When we have objects of different types stored in a container, and we want to
apply different operations (depending on the concrete type of the element) then Visitor design pattern
is appropriate to be used.

Another interesting example of using Template Method pattern is related to the implementation of
different sorting methods, based on Merritt taxonomy [5]. At the top of her sorting taxonomy is an
abstract divide-and-conquer algorithm: split the array to be sorted into two subarrays, (recursively) sort
the subarrays, and join the sorted subarrays to form a sorted array. Merritt considers all comparison-
based algorithms as simply specializations of this abstraction and partitions them into two groups based
on the complexity of the split and join procedures: easy split/hard join and hard split/easy join. At the
top of the groups easy split/hard join and hard split/easy join are merge sort and quick sort, respectively,
and below them will fit all other well-known, more ”low-level” algorithms. For example, splitting off

3

Figure 3: OperationOnStructure Template Method Class.

only one element at each pass in merge sort results in insertion sort. Thus insertion sort can be viewed
as a special case of merge sort.

Sorting could be modeled as an abstract class with a template method to perform the sorting. This
method delegates the splitting and joining of arrays to the concrete subclasses, which use an abstract
ordering strategy to perform comparisons on objects [7].

2.3 Visitor

Visitor design pattern is used in order to represent an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without changing the classes of the elements on
which it operates.

The classes and/or objects participating in this pattern are:

• Visitor declares a Visit operation for each class of ConcreteElement in the object structure. The
operation’s name and signature identifies the class that sends the Visit request to the visitor. That
lets the visitor determine the concrete class of the element being visited. Then the visitor can
access the elements directly through its particular interface

• ConcreteVisitor implements each operation declared by Visitor. Each operation implements a
fragment of the algorithm defined for the corresponding class or object in the structure. Con-
creteVisitor provides the context for the algorithm and stores its local state. This state often
accumulates results during the traversal of the structure.

• Element defines an Accept operation that takes a visitor as an argument.

• ConcreteElement implements an Accept operation that takes a visitor as an argument

• ObjectStructure can enumerate its elements may provide a high-level interface to allow the visitor
to visit its elements may either be a Composite (pattern) or a collection such as a list or a set

When we need to introduce different operations on the nonhomogeneous elements of a data structure,
Visitor design pattern could be applied.

In the Figure 5 we present the interfaces and an abstract class that could be used in order to apply
Visitor pattern for containers. A Visitor has to be defined as an interface that contains different methods
that correspond to different types (types of the elements that will be stored in the container). Elements
of a visitable container should be also visitable (they have to implement the interface Visitable). In a
visitable element class, the operation accept calls the corresponding method of Visitor, depending on the
concrete type of that element.

4

Figure 4: Visitor design pattern.

interface Element {
public void Accept (Visitor v) ;

}
abstract class VisitableContainer implements Container, Element{

public abstract void Accept (Visitor v) {
Iterator it = getIterator(); //getIterator is abstract here
while (it.hasNext()){

Element vo = (Element)it.getElement();
vo.Accept(v);
it.next();

}
}

}

Figure 5: Java interfaces and abstract classes used in order to apply Visitor pattern for containers.

5

Figure 6: Strategy design pattern.

Figure 7: A Strategy class for tree traversal.

2.4 Strategy

Strategy design pattern defines a family of algorithms, encapsulate each one, and make them interchange-
able. Strategy lets the algorithm vary independently from clients that use it [3].

The classes and/or objects participating in this pattern are:

• Strategy declares an interface common to all supported algorithms. Context uses this interface to
call the algorithm defined by a ConcreteStrategy;

• ConcreteStrategy implements the algorithm using the Strategy interface;

• Context is configured with a ConcreteStrategy object, maintains a reference to a Strategy object
and may define an interface that lets Strategy access its data.

A good example is represented by the binary tree traversals. We may have preorder, inorder and
postorder traversal for binary trees. In this way we may dynamically choose the traversal order for a
binary tree (Figure 7). Encapsulating the algorithm in separate Strategy classes lets us vary the algorithm
independently of its context, making it easier to switch and understand.

2.5 Comparator

For sorted structures it is very important to allow different comparison criteria. Also, defining a generic
sorted structure means that we may construct sorted structures on different types of objects with different
comparison operations (Figure 8). Comparator design pattern could be seen as a special kind of Strategy
design pattern, since it specifies how two objects are compared.

Comparators are very common and they were introduced before using object oriented programming
for data structures. Function parameters are used in imperative programming in order to implement
comparators. They are used especially for sorted structures, and sorting algorithms.

This design pattern can be successfully used for priority queues, too. An abstract class
PriorityQueueWithComparator is defined, which implements the interface PriorityQueue, and aggra-
gates the Comparator. In this way, the priorities of the elements are not stored into the queue; we
establish only an order between elements, using a comparator.

6

Figure 8: Using Comparator for implementing sorted list with different comparison criteria.

Figure 9: State design pattern.

2.6 State

An interesting implementation of containers using State design pattern is presented in [6]. The key
here is to encapsulate states as classes. A container class could be considered as an abstraction defined
by three methods: insert, remove, and retrieve. Most implementations based on dynamic memory
allocation use the null pointer to represent the empty structure. Because the semantics of a null pointer
is too low-level to adequately encapsulate the behavior of an object, such implementations have a high
degree of code complexity, and are cumbersome to use. A null pointer (or a null reference in Java) has no
behavior and thus cannot map well to the mathematical concept of the empty set, which is an object that
exists and that has behavior. The goal is to narrow the gap between the conceptual view of a container
structure and its implementation. In this convention, the null pointer is to represent the non-existence
of an object only. Emptiness and non-emptiness are simply states of a container

A container structure is a system that may change its state from empty to non-empty, and vice-versa.
For example, an empty container changes its state to non-empty after insertion of an object; and when
the last element of a container is removed, its changes its state to empty.

For each distinct state, the algorithms to implement the methods differ. For example, the algorithm
for the retrieve method is trivial in the empty state -it simply returns null- while it is more complicated
in the non-empty state. The system thus behaves as if it changes classes dynamically. This phenomenon
is called “dynamic reclassification”.

The State pattern is a design solution for languages that do not support dynamic reclassification
directly. This pattern can be summarized as follow:

• Define an abstract class for the states of the system. This abstract state class should provide all
the abstract methods for all the concrete subclasses.

• Define a concrete subclass of the above abstract class for each state of the system. Each concrete
state must implement its own concrete methods.

7

• Represent the system by a class containing an instance of a concrete state. This instance represents
the current state of the system.

• Define methods for the system to return the current state and to change state.

• Delegate all requests made to the system to the current state instance. Since this instance can
change dynamically, the system will behave as if it can change its class dynamically.

Application of the State pattern for designing a linked list class is straightforward. We name this
class, List, and the abstract class for list states, AListNode (as in abstract list node). AListNode has
two concrete subclasses: EmptyListNode, and NonEmptyListNode. The EmptyListNode has no data
while the NonEmptyListNode contains a data object, and a tail, which is a List. One can see how
closely this implementation maps to the following portion of the abstract definition of a list: If a list is
empty, it contains no data object. If it is not empty, it contains a data object called the head, and a
list object called the tail. The class List contains an instance of a concrete subclass of AListNode. Via
polymorphism, it can be an EmptyListNode or a NonEmptyListNode at run time. In order to qualify it
as a container class, we add to the behavior of class List the three container methods: insert, remove,
and retrieve. A sketch of the Java implementation of such a list is given in Figure 9.

3 Conclusion

Using design patterns in data structures implementation represents a step forward in this field. Design
patterns allow data structures to be implemented in a very general and flexible way. We have presented
some examples of data structures that use the advantages brought by structural design patterns: Iterator,
Template Method, Visitor, Stategy, Comparator, State.

Behavioral patterns deal with encapsulating algorithms and managing or delegating responsibility
among objects. They focus more on communication and interaction, dynamic interfaces, object compo-
sition, and object dependency.

For teaching, introducing design patterns in presentation of the data structures could represent also
an important advantage. Students may beneficiate of an easy way of understanding design patterns in
the early stages of their preparation [8]. It is not need for complex applications in order to illustrate
some design patterns, and their advantages. In this way, students realize that what important is to use
design patterns at any level of the design.

References

[1] Bruno R. Preiss. Data Structures and Algorithms with Object-Oriented Design Patterns in Java,
Wiley Computer Publishing, 1999.

[2] H.E. Eriksson, M. Penker, UML Toolkit. Wiley Computer Publishing, 1997.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object Ori-
ented Software, Addison-Wesley, 1995.

[4] E. Horowitz. Fundamentals of Data Structures in C++. Computer Science Press, 1995.

[5] S. Merritt, An Inverted Taxonomy of Sorting Algorithms, Comm. ACM, 28, 1 (Jan. 1985), 96-99.

[6] D. Nguyen. Design Patterns for Data Structures. SIGCSE Bulletin, 30, 1, March 1998, pp. 336-340.

[7] D. Nguyen. Design Patterns for Sorting. SIGCSE Bulletin 2001 2/01 pp. 263-267.

[8] V. Niculescu, Teaching about Creational Design Patterns, Workshop on Pedagogies and Tools for
Learning Object-Oriented Concepts, ECOOP’2003, Germany, July 21-25, 2003.

8

public class List implements IContainer
{
private AListNode link; //state.
AListNode link () {
return link;
}
void changeLink (AListNode n) {
//Change state;
link = n;
}
public List (){
//Post: this List exists and is empty.
//constructor code goes here
}
public void insert (Object key, Object v) {
//Pre : key and v are not null.
link.insert (this, key, v);
} //***Other constructors and methods...
}
abstract class AListNode {
abstract void insert (List l, Object k, Object v);
//Pre : l, k and v are not null.
//***Other abstract methods...
}
class NonEmptyListNode extends AListNode {
private Object key;
private Object val;
private List tail;
NonEmptyListNode (Object k, Object v) {
//Pre : k and v are not null.
//Post: this node exists and contains k, v, and an empty
tail.
key = k;
val = v;
tail = new List ();
}
void insert (List l, Object k, Object v) {
if (k.equals (key)) {
val = v;
}
else {
tail.insert (k, v);
}
}
//***Other methods
}
class EmptyListNode extends AListNode {
void insert (List l, Object k, Object v) {
changeLink (new NonEmptyListNode (k, v);
} //***Other methods
}

Figure 10: Java implementation of linked lists using State pattern.

9

[9] V. Niculescu. On Choosing Between Templates and Polymorphic Types. Case-study., Proceedings of
“Zilele Academice Clujene”, Cluj-Napoca, June 2003, pp.71-78.

[10] D.M. Mount. Data Structures, University of Maryland, 1993.

10

