
The Journal of Supercomputing, 29, 5–25, 2004

2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

On Data Distributions in the Construction of
Parallel Programs

VIRGINIA NICULESCU vniculescu@cs.ubbcluj.ro

Department of Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

Abstract. Data distributions have a serious impact on time complexity of parallel programs, developed

based on domain decomposition. A new kind of distributions—set distributions, based on set-valued

mappings, is introduced. These distributions assign a data object to more than one process. The set

distributions can be used especially when the number of processes is greater than the data input size, but,

sometimes using set distributions can lead to efficient general parallel algorithms. The work-load

properties of these distributions and their impact on the number of communications are discussed. In

order to illustrate the implications of data distributions in the construction of parallel programs, some

examples are presented. Two parallel algorithms for computation of Lagrange interpolation polynomial

are developed, starting from simple distributions and set distributions.

Keywords: parallel computation, distribution, complexity, correctness, numerical algorithms

1. Introduction

Many models of parallel programs use distributed data objects, like arrays or
matrices. In a parallel program, processes can independently perform operations on
their data until a global information is needed. Communication processes are
responsible for combining and collecting global information. This causes synchro-
nization points in the parallel program, which usually lead to waiting times. The
impact of distributions on the time complexity of a parallel program is therefore an
important issue.
The model for parallel programs design, used here, is based on that presented in

Loyens [6]. The model considers a parallel program as a number of cooperating
parameterized processes with similar structures.

1.1. Notations

A notation for quantifications is used:

ð8k : Q : EÞ;

where 8 is a quantifier ð
P

; V;max; . . .Þ, k is the list of bound variables, Q is the
predicate describing the domain of the bound variables, and E is an expression.
Function application is denoted by an infix, left associative dot ‘‘.’’ operator.
The lambda calculus is used for the definition of distribution functions. The set

ðVi : 0 � i < n : iÞ is denoted by n. The integer division and remainder use the
symbols / and % respectively. Also, the proof notation of W. F. H. Feijen is used.

1.2. Program notation

The program notation is based on Dijkstra’s guarded command language. The
programs use variables declarations in a Pascal-like style, extended with local scope
rules. The symbols j½x . . .�j delimit the scope of variable x. Variables usually have the
type ‘‘int’’ or ‘‘real’’. An array f of length n with base type ‘‘real’’ is declared as
‘‘f ði : 0 � i < nÞ: array of real’’.
The programs use the following constructs:

. abort—stop forever;

. skip—do nothing;

. x :¼ e—assignment;

. S0; S1—sequential composition;

. if B0?S0½ �B1?S1 fi—alternative construct;

. do B0?S0½ �B1?S1 od—repetition.

An extension to Dijkstra’s notation is introduced for the for all statement:

. for all i : i [Set : S.i lla rof—arbitrary order.

Parallel composition is denoted by:

. par q : 0 � q < p : S.q rap—parallel composition.

Communication is expressed by the statements:

. r!e—output to process r the value of expression e;

. s?x—input from process s of a value, which is assigned to x.

1.3. Time complexity

For a parallel program with the input size n and the number of processes p, we
consider that the time complexity is expressed by:

T :p:n ¼ Tf :p:nþ a � Tc:p:n;

where

. Tf :p:n ¼ the computation complexity (measured in tf);

. Tc:p:n ¼ the communication complexity (measured in tc);

. tc ¼ the time required to communicate a single value;

6 NICULESCU

. tf ¼ the time required to execute a single operation;

. a ¼ tc=tf .

The communication complexity depends on the communication network. We will
consider here an ideal communication network—a process is directly connected with
all the others. Other kinds of networks may also be considered: chain, mesh,
hypercube, . . . ; for these, the communication processes have to be evaluated
depending on their structure.
Also, we consider idealized communications—no message startup time. So, we will

not analyze the possibilities of coupling some communication processes, in order to
reduce the total real communication time. These analyses can be done at the
implementation phase.

1.4. Program derivation

A parallel program is considered to be formed by many parameterized processes
S:qð0 � q < pÞ, which are running in parallel. There is no shared memory. A
parameterized process is much like a procedure in sequential programming. The
difference is that, instead of having only one instantiation in a sequential program,
we have many instantiations in a parallel program.
In sequential programming the Hoare-triple [5]

fQgSfRg;

is commonly used to denote a formal specification of a program S. This notation
expresses that if the program S starts in a state described by the predicate Q, and the
program terminates, then, upon completion the predicate R is satisfied.
For specifying a parallel program, both pre- and post-conditions, Q and R, are

split up as conjunctions of pð p > 0Þ local pre- and post-conditions, and a process is
associated with each such pair:

fQ:qgS:qfR:qg; Vq : 0 � q < p:

So, we may specify a parallel program as follows:

j½
fQg

par q : 0 � q < p:
fQ:qg

S.q
fR:qg
rap

fRg
�j

A parameterized specification usually refers some local variables representing a
part of a distributed object. Therefore, the parameters of a specification are q, p and

ON DATA DISTRIBUTIONS IN THE CONSTRUCTION OF PARALLEL PROGRAMS 7

a data distribution D. Many choices are possible for D, each of them having an
impact on the complexity of the parallel program.
Such a specification forms the starting point for a parallel program derivation, a

formal construction of parameterized processes constituting a parallel program.
Our approach for obtaining a parameterized process S from a functional

specification is similar to the methods used in sequential programming. These
methods obtain an invariant from a specification, in a calculational style. The
programs are derived by calculating the necessary conditions to maintain the
invariant. Because we have parameterized specifications, we will derive parameter-
ized invariants.
A global specification requires some form of coordination between processes, so in

order to satisfy the specification, several processes have to interact with one another,
via message exchanging.
A parameterized process is refined into a sequence of ordinary sequential

programs and communication processes. A parallel program is, thus, decomposed
into layers of process instances.

1.5. Distributions

Static distributions are going to be discussed; in a static distribution the assignments
are not changed during the execution of the program.
Two kinds of distributions are presented:

. simple distributions, defined by single-valued mappings;

. set distributions, defined by set-valued mappings.

2. Simple distributions

The simple distributions are characterized by:

. the number of data elements assigned to one process;

. the data distribution on processes.

If the data input is a vector, the simple distribution is called 1D distribution, and if it
is a multi-dimensional array, the distribution is called Cartesian distribution [6].

2.1. 1D distributions

Definition 1 D ¼ ðd;A;BÞ is called a distribution if A and B are finite sets, and d is a
mapping from A to B. Set A specifies the set of data objects (an array with n
elements), and the set B specifies the set of processes, which is usually p. The function
d assigns each index ið0 � i < nÞ, and its corresponding element, to a process
number.

8 NICULESCU

Well-known ways of distributing an array are: every element to one unique process
(identity), assigning p equally-sized consecutive array segments (linear), and
assigning elements cyclically (cyclic):

identity ¼ ððl i ? iÞ; n; pÞ;
linear ¼ ðl i ? i=ðn=pÞ; n; pÞ; provided that p j n;
cyclic ¼ ðl i ? ði%pÞ; n; pÞ:

Definition 2 Considering a distribution ðd; n; pÞ, the set of elements from n, assigned
to process qð0 � q < pÞ, is given by O.q:

O:q ¼ ðVi : i [n6d:i ¼ q : iÞ:

Counting the cardinalities of the sets O.q is meaningful in time complexity
analysis. That gives a good indication of the amount of work per process. The sets
O.q form a partition of n.

Definition 3 The maximum/minimum number of data objects assigned to a process
for a distribution ðd; n; pÞ are defined by:

MaðdÞ ¼ ðmax q : 0 � q < p : jOd:qjÞ;
MiðdÞ ¼ ðmin q : 0 � q < p : jOd:qjÞ:

A distribution ðd; n; pÞ is called w-balanced, w � 0 iff

MaðdÞ �MiðdÞ � w:

Distributions may be composed to obtain new distributions. Practical applications
of composed distributions are, for example, parallel programs using different data
distributions. In this way, it is possible to trade off the load balance for each
individual part and to avoid expensive redistributions during computation.

2.2. Cartesian distributions

Distributions of multi-dimensional arrays may be modeled by Cartesian distribu-
tions. In what follows, it is assumed that an m6n matrix is distributed across
processes.

Definition 4 A Cartesian distribution is defined by a Cartesian product of 1D
distributions. The Cartesian product of two 1D distributions D0 ¼ ðd0;m;MÞ;
D1 ¼ ðd1; n;NÞ is defined by:

D06D1 ¼ ðd06d1;m6n;M6NÞ;

ON DATA DISTRIBUTIONS IN THE CONSTRUCTION OF PARALLEL PROGRAMS 9

where the function d06d1 assigns a pair of process numbers to each array index
pair.
Written formally, we have:

d06d1 ¼ ðl i; j ? ðd0:i; d1:jÞÞ:

The Cartesian product of two 1D distributions uses a process pair as identification
for a process. Cartesian distributions of matrices can be obtained by distributing the
rows of the matrix independently from the columns. Since the processes number p is
set, we can consider all decomposition such that p ¼ M �N.
Some examples of Cartesian distributions, for p ¼ M �N processes, are:

linear2 ¼ ðdlinear;m;MÞ6ðdlinear; n;NÞ;with M ¼ N���also called block;

row ¼ linear2 with N ¼ 1;

column ¼ linear2 with M ¼ 1;

cyclic2 ¼ ðdcyclic;m;MÞ6ðdcyclic; n;NÞ;with M ¼ N���also called grid;

cyclic� row ¼ cyclic2 with N ¼ 1;

cyclic� column ¼ cyclic2 with M ¼ 1:

2.3. Counting communications

During a communication, processes need values that are not available locally, values
that have been assigned to some different processes, and hence have to be
communicated. The distribution determines the total number of communications.
It is also important that the communications are spread evenly across the pro-
cesses in such way that many communications take place in parallel—if the
communication network offers enough freedom to implement communication
processes efficiently.
Given a program’s postcondition and a distribution, the evaluation of the total

number of communications, before developing the program, is possible. The
program’s postcondition is split in p local postconditions according to the
distribution used. For each local postcondition a process, establishing it, is created
and associated to. Under the hypothesis that every datum is assigned to one unique
process, the total number of postconditions that refer to a particular datum is a
measure of the number of communications of that datum. However, it may happen
that a subexpression containing several data occurs in different postconditions. One
process can compute such a subexpression and store the result in a variable, which is
communicated to the other processes. And, thus, communication is reduced. This
case is excluded from the following counting technique.
For the datum e, the quantity NOcc.e is introduced:

NOcc:e ¼ the number of local postconditions in which e occurs:

10 NICULESCU

By summing over all e, the total number of communications NCom will be obtained:

NCom ¼
X

e :: NOcc:e� R:e
� �

;

where

R:e ¼ 1; if e occurs in the postcondition of the process that contain it;
0; otherwise.

�

The value of NCom is only determined by the way the program’s postcondition is
split up, and the distribution used. The communication complexity is bounded from
below by ðNComþ p� 1Þ=p, if a process can perform only one communication
action at each moment.
This technique of counting communications allows a comparison of the

distributions on the basis of their communication overhead. Like we mentioned
before, the applicability of the technique is not possible when common subexpres-
sions exist, but generally in the construction of the program stepwise refinement is
used, and so these cases may be many times excepted. The technique is useful
especially because the results that can be obtained are independent of any
communication network.
To illustrate this technique, an example is given.

Example 1 (Matrix multiplication) Let us consider two matrices A and B of
dimensions m6o and o6n, respectively. Our goal is to compute the m6n matrix C,
satisfying postcondition R:

R : C ¼ A6B:

We consider p ¼ M �N processes, each process being identified by an ordered pair
ðs; tÞ; 0 � s < M; 0 � t < N. For the matrix C a Cartesian distribution D06D1 is
used, and we consider that the folowing conditions hold: M < o; N < o; M < m;
N < n.

The local postconditon R.s.t is:

R:s:t : ðVi; j : 0 � i < m60 � j < n6d0:i ¼ s6d1:j ¼ t :

cði; jÞ ¼
X

k : 0 � k < o : aði; kÞ � bðk; jÞ
� �

:

Note that

ðVs; t : 0 � s < M60 � t < N : R:s:tÞ) R:

In order to count the number of communications, quantities NOcc:aði; kÞ and
NOcc:bðk; jÞ are calculated:

NOcc:aði; kÞ
¼ jðVs; t : 0 � s < M60 � t < N6d0:i ¼ s6ð9j :: d1:j ¼ tÞ : ðs; tÞÞj:

ON DATA DISTRIBUTIONS IN THE CONSTRUCTION OF PARALLEL PROGRAMS 11

If the d1 is surjective:

NOcc:aði; kÞ
¼ fdefinition NOcc; d1 is surjectiveg

jðVs; t : 0 � s < M60 � t < N6d0:i ¼ s6true : ðs; tÞÞj
¼ fcalculusg

N � jðVs : 0 � s < M6d0:i ¼ s : sÞj
¼ fd0 is a functiong

N:

Similarly NOcc:bði; kÞ ¼ M, if d0 is surjective.
If we assume that A is distributed using a Cartezian distribution D06D2, and B is

distributed using a Cartezian distribution D36D1, then:

NCom

¼ fdefinition of NComgX
i; k : 0 � i < m60 � k < o : NOcc:aði; kÞ � 1

� �

þ
X

k; j : 0 � k < o60 � j < n : NOcc:bðk; jÞ � 1
� �

¼ fcalculusg
omðN � 1Þ þ onðM � 1Þ:

Remark:

. For M ¼ N ¼ p ¼ 1; NCom ¼ 0 and no communications are necessary.

. NCom is independent of particular choices of d0 and d1.

. It is possible to determine M and N, p ¼ M �N such that NCom is minimal.
All possible values ðM;NÞ are integer points on the hyperbola p ¼ M �N;
1 � M;N � p, and the values of NCom for fixed m, n, o lie on the line with
a slope dependent on m/n. Hence, the minimal value for Ncom depends on the
ratio m/n and in particular for m ¼ n; Ncom has a minimal value if p is square.
This result confirm the results obtained by evaluation of parallel programs for
matrix multiplication, based on 1D decomposition and 2D decomposition [3].

A similar counting technique is presented in Loyens [6], but instead of the function
R.e, the constant value 1 is used there. This means that the process that contains a
datum has to always use it in its postcondition. This is almost always true; there are,
however, exceptions to this, and the following example illustrates one such
exception.

Example 2 (Matrix multiplication) We consider the same problem, but with the
matrix A distributed with a D06D2 distribution, and we distribute the transpose of
matrix B, using a distribution D36D2 ðM < m;M < n;N < n;N < oÞ.

12 NICULESCU

The local postcondition is the same as in the first case. But, now we rewrite the
postcondition in a different way:

�
Vi; j : 0 � i < m60 � j < n6d0:i ¼ s6d1:j ¼ t :

cði; jÞ ¼
X

k : 0 � k < o : aði; kÞ � bðk; jÞ
� ��

¼ fcalculusg�
Vi; j : 0 � i < m6d0:i ¼ s60 � j < n6d1:j ¼ t :

cði; jÞ ¼
X

v : 0 � v < N :
X

k : 0 � k < o6d2:k ¼ v : aði; kÞ � bðk; jÞ
� �� ��

¼ wði; j; vÞ ¼not
X

k : 0 � k < o6d2:k ¼ v : aði; kÞ � bðk; jÞ
� �n o

�
Vi; j : 0 � i < m6d0:i ¼ s60 � j < n6d1:j ¼ t :

cði; jÞ ¼
X

v : 0 � v < N : wði; j; vÞ
� ��

:

Therefore, the program has two stages: the first for the computation of wði; j; vÞ
values, and the second that combines these values.
The local postcondition for the first stage is:

R0:s:t :
�
Vi; j : 0 � i < m6d0:i ¼ s60 � j < n :

wði; j; tÞ ¼
X

k : 0 � k < o6d2:k ¼ t : aði; kÞ � bðk; jÞ
� ��

:

The element aði; kÞ only appears in the postcondition of the process containing it,
and so, NOcc:aði; kÞ ¼ 1;R:aði; kÞ ¼ 1. The element bðk; jÞ appears in M postcondi-
tions: NOcc:bðk; jÞ ¼ M;R:bðk; jÞ ¼ 1.

NOcc:bðk; jÞ
¼ fdefinitiong

jðVs; t : 0 � s < M60 � t < N6d2:k ¼ t6ð9i :: d0:i ¼ sÞ : ðs; tÞÞj
¼ fd0 is surjectiveg

M:

Hence NCom ¼ onðM � 1Þ.
For the second stage the postcondition is:

R1:s:t :
�
Vi; j : 0 � i < m60 � j < n6d0:i ¼ s6d1:j ¼ t :

cði; jÞ ¼
X

v : 0 � v < N : wði; j; vÞ
� ��

:

We have NOcc:wði; j; vÞ ¼ 1. In order to compute NCom corresponding to the

ON DATA DISTRIBUTIONS IN THE CONSTRUCTION OF PARALLEL PROGRAMS 13

second stage, we have to establish first R:wði; j; vÞ:

R:wði; j; vÞ ¼ 1; if v ¼ d1:j;
0; if v 6¼ d1:j:

�

Therefore NCom ¼ mnðN � 1Þ.
Thus, we obtain the following result for the whole program:

NCom ¼ onðM � 1Þ þmnðN � 1Þ:

Remark: If we compare the results of these two examples for matrix multiplication,
we may conclude that choosing the best distribution from the communication point
of view depends on the values of n and o.

3. Set distributions

When the processes number is greater than the data input size, it is desirable to
assign a datum to more than one process. Also, when a data object is used in more
than one computation, this kind of distributions may lead to efficient algorithms.

Definition 5 A set distribution for n data input objects on p processes is defined by a
set-valued mapping y : n��p; y:i represents the set of processes containing the data
object i.

The set distributions are characterized by:

. the number of processes containing one data object;

. the data distribution on processes.

Examples of set distributions, when p > n, are linear and cyclic:

ylinear:i ¼ Vk : 0 � k < p=n : i p=nð Þ þ kð Þ; if n j p;

ycyclic:i ¼ ðVk : 0 � k < p=n : knþ iÞ; if n j p:

Similar properties about load imbalance, with those for the simple distributions,
may be established.
We may also define a function YInd that allows us to obtain the processes that

contain a particular datum, in a particular order. For a set distribution y : n��p, the
function YInd is defined as:

YInd : n6ðp=nÞ? p:

14 NICULESCU

For linear and cyclic the YInd functions are:

YInd linear:i:k ¼ i
�
p=n

�
þ k;

YIndcyclic:i:k ¼ k � nþ i:

If we use a set distribution, we may formally define a broadcast, using these
functions.

Example 3 (Broadcast) We consider p processes and an array xði : 0 � i < nÞ :
array of int, n < p, distributed over the processes by a set distribution y. A broadcast
of a value xðiÞ may be defined by the following parameterized communication
processes:

C.q ::
j[a : int;
fa ¼ xðiÞV:ðq [y:iÞg

if ðq ¼ YInd:i:0Þ?
par u : 0 � u < p6:ðu [y:iÞ:
u!a

rap
½ � :ðq [y:iÞ?

YInd:i:0?a
fi

fa ¼ xðiÞg
]j

There are cases when, in order to easier express the sets of the processes that
contain a datum, a set distribution may be defined using a simple distribution, which
is, for example, multiplicated.

3.1. Counting communications

The counting communications technique used for simple distributions may be also
used for set distributions, with the difference that for a datum e, the value R.e
depends on the number of processes where e is assigned:

R:e ¼
X

q : 0 � q < p6q [y:e : A:q:e
� ���� ���;

where

A:q:e ¼ 1; if e occurs in the postcondition of the process q,
0; otherwise.

�

ON DATA DISTRIBUTIONS IN THE CONSTRUCTION OF PARALLEL PROGRAMS 15

Example 4 (Matrix multiplication) We consider again two matrices A and B of
dimensions m6o and o6n, respectively (with p � m � n � o). To compute the m6n
product matrix C, the postcondition R must be satisfied:

R : C ¼ A6B:

We will use a set distribution, but in order to simplify the specification of the set of
processes containing the same data, we choose another approach, different than the
set-valued mapping.
If the data input is an m6n matrix, the processes number p is factorized such that

p ¼ M �N �Q, where M � m and N � n; each process is identified by an ordered
triple ðs; t; rÞ; 0 � s < M; 0 � t < N; 0 � r < Q.
For matrix C, a Cartesian distribution D06D1;D0 ¼ ðd0;m;MÞ;D1 ¼ ðd1; n;NÞ

is used; the matrix C is replicated Q times. Another distribution D2 ¼ ðd2; o;QÞ is
used. The matrix A is distributed using the distribution D06D2, and is replicated N
times; the matrix Bt is distributed using D16D2, and is replicated M times.
The parallel program is split in two stages. In the first stage all processes work to

compute partial results, and in the second, the partial results are combined. To
compute these partial values, M �N �Q partial parameterized postconditions are
defined.
The local parameterized postconditon R.s.t.0 is:

R:s:t:0 :
�
Vi; j : 0 � i < m60 � j < n6d0:i ¼ s6d1:j ¼ t

: cði; jÞ ¼
X

r : 0 � r < Q : sum:i:j:r
� ��

;

where sum:i:j:r ¼ ð
P

k : 0 � k < o6d2:k ¼ r : aði; kÞ � bðk; jÞÞ.
Note that

ðVs; t : 0 � s < M60 � t < N : R:s:t:0Þ) R:

Values sum.i.j.r are calculated based on the following parameterized postcondi-
tions:

R0:s:t:r : ðVi; j : 0 � i < m60 � j < n6d0:i ¼ s6d1:j ¼ t

: wði; j; rÞ ¼ sum:i:j:rÞ:

For the first stage, provided that d1 and d0 are surjective, the number of
communications is determined by:

NOcc:aði; kÞ
¼ jðVs; t; r : 0 � s < M60 � t < N60 � r < Q6d0:i ¼ s6d2:k

¼ r6ð9j :: d1:j ¼ tÞ : ðs; t; rÞÞj
¼ N:

Analog NOcc:bðk; jÞ ¼ M. Because R:aði; kÞ ¼ N and R:bðk; jÞ ¼ M) NCom ¼ 0.

16 NICULESCU

For the second stage:

NOcc:ðwði; j; rÞÞ
¼ jðVs; t : 0 � s < M60 � t < N6d0:i ¼ s6d1:j ¼ t : ðs; tÞÞj
¼ 1

and

R:wði; j; rÞ ¼ 1; if r ¼ 0,
0; if r 6¼ 0:

�

Hence NCom ¼ mnðQ� 1Þ.

Remark:

. If Q is taken the smallest possible, the number of communications decreases, but
the work-load of the processes increases ðp ¼ M �N �QÞ.

. M �N communications can be performed in parallel, therefore, the communica-
tion complexity depends on ðm � nÞ=ðM �NÞ � ðQ� 1Þ.

. If we consider a tree-like computation algorithm for the summation of partial
sums, the factor Q� 1 will be replaced with log2 Q.

. The distribution functions have no implications on the communication number.

For matrix-matrix multiplication, this idea of replication on a third dimension is
not new. But, by using these distributions the flexibility is increased—a general
algorithm which does not depend on the values of m, n, o, and p, may formally be
developed. We may also choose the best division of p: p ¼ M �N �Q.

4. Lagrange polynomial

In this section, a parallel algorithm for the computation of Lagrange polynomial on
a given value is developed. Two variants are constructed starting by selecting
different types of distribution: simple and set.

4.1. The problem

Let ½a; b� � R; xðiÞ [½a; b�; 0 � i < m, such that xðiÞ 6¼ xð jÞ for i 6¼ j and f : ½a; b�?R.
Lagrange interpolation polynomial is defined as:

ðLðm�1Þ f Þ:x ¼
X

i : 0 � i < m : li:x � f :xðiÞ
� �

;

ON DATA DISTRIBUTIONS IN THE CONSTRUCTION OF PARALLEL PROGRAMS 17

where li; 0 � i < m are the fundamental Lagrange interpolation polynomials:

li:x ¼ ðx� xð0ÞÞ . . . ðx� xði � 1ÞÞðx� xði þ 1ÞÞ . . . ðx� xðm� 1ÞÞ
ðxðiÞ � xð0ÞÞ . . . ðxðiÞ � xði � 1ÞÞðxðiÞ � xði þ 1ÞÞ . . . ðxðiÞ � xðm� 1ÞÞ

¼ u:x

ðx� xðiÞÞ ?
1

ðxðiÞ � xð0ÞÞ . . . ðxðiÞ � xði � 1ÞÞðxðiÞ � xði þ 1ÞÞ . . . ðxðiÞ � xðm� 1ÞÞ :

The global postcondition for the computation of the value Lðm�1Þ f :x is

R : lx ¼ ðLm�1 f Þ:x:

4.2. Variant 1—simple distributions

We consider the distribution d : m ? p, for the data xðiÞ; f ðiÞ; 0 � i < m. The x value
is distributed to all the processes (or x is distributed to process 0, and then
communicated to all other processes, by a broadcast).
Using stepwise refinement, the following stages can be considered:

1. Compute the value u.x.
2. Compute the fundamental polynomials li:x.
3. Compute the value ðLm�1 f Þ:x.

The local postconditions for the three stages are:

R0:q : ux ¼ u:x6ðVi : 0 � i < m6d:i ¼ q : xxðiÞ ¼ x� xðiÞÞ
R1:q : ðVi : 0 � i < m6d:i ¼ q : lðiÞ ¼ li:xÞ
R2:q : lx ¼ ðLm�1 f Þ:x:

The first and the last stages represent computations of a product and a sum, so a
classic algorithm for a combine computation in a tree-like manner, may be used.
The postcondition for the second stage may be rewritten in the following way:

R1:q :

�
Vi : 0 � i < m6d:i ¼ q : lðiÞ ¼ ux

x� xðiÞ � prod:i:m
�
;

where prod:i:k ¼ ð
Q

j : 0 � j < k6j 6¼ i : xðiÞ � xð jÞÞ.
The communications counting leads to the conclusion that the total number of

communications ðNCom ¼ m � ð p� 1ÞÞ is not influenced by the distribution
function. We consider the cyclic distribution with the assumption m%p ¼ 0. To
simplify the notation, we use the set of the all local indexes O:q ¼ ðVi : 0 � i <
m6i%p ¼ q : iÞ.
For the derivation of the program it is necessary to define parameterized

invariants. For this, a variable k : 0 � k < m6k%p ¼ 0 is introduced. So, the

18 NICULESCU

invariants are:

P1:q : P1:0:q6P1:1:q

P1:0:q : 0 � k < m6k%p ¼ 0

P1:1:q : ðVi : i [O:q : prðiÞ ¼ prod:i:kÞ:

If k is initialized with 0 and prðiÞ with 1, the invariants hold.
The progress is made by increasing the variable k by the increment p:

P1:1:qðk :¼ kþ pÞ
¼ fsubstitutiong
ðVi : i [O:q : prðiÞ ¼ prod:i:ðkþ pÞÞ
¼ frange splitingg�
Vi : i [O:q : prðiÞ ¼ prod:i:k �

Y
j : k � j < kþ p6j 6¼ i : xðiÞ � xð jÞ

� ��
:

So, we get the program:

j½ p;m : int; x; ux : real;
l; xx; xði : 0 � i < mÞ : array of real;
par q : 0 � q < p:

j½fQ:q : ðVi : i [O:q : xxðiÞ ¼ x� xðiÞÞ6ux ¼ u:xÞg
S.q

fR1:q : lðiÞ ¼ li:xg
j�

rap
j�

S.q ::
j½ prði : 0 � i < mÞ : array of real;

aði : 0 � i < mÞ : array of real;
for all i : i [O:q:

aðiÞ :¼ xðiÞ;
prðiÞ :¼ 1

lla rof
fðVi : i [O:q : aðiÞ ¼ xðiÞÞg
k :¼ 0; fP1:qðk :¼ 0Þg
do ðk 6¼ mÞ?

RestoreP1:1:q fP1:1:qðk :¼ kþ pÞg
; k :¼ kþ p fP1:qðk :¼ kþ pÞg

od
for all i : i [O:q:

lðiÞ :¼ ðux=xxðiÞÞ=prðiÞ
lla rof fR1:qg

�j

ON DATA DISTRIBUTIONS IN THE CONSTRUCTION OF PARALLEL PROGRAMS 19

RestoreP1.1.q ::
j½

C0:q fðVi : 0 � i < m6i < kþ p : aðiÞ ¼ xðiÞÞg
;S0.q

�j

The description of the parameterized processes C0.q and S0.q is given in
Appendix A.

4.2.1. Time complexity. The procedure RestoreP1.q is called m/p times, and it
contains a communication process and a computational process. In the communi-
cation process every process brodcasts a value to the other processes. If we consider
that a brodcast lasts one communication time unit, then Tc:p:m ¼ m=p � p ¼ m. The
computation process executes p operations ð�; �Þ m=p times. So, the time complexity
for the second stage is:

T :p:m ¼ m

p
� p � aþ 2p �m

p

	

þ 2

m

p

¼ m � aþ 2
m2

p
þ 2

m

p
:

4.3. Variant 2—set distribution

Let p ¼ M �M and all the processes are identified by a pair ðs; tÞ; 0 � s; t < M.
We consider a cyclic distribution d : m ? M, and M permutations

pt : M ? M; 0 � t < M, defined by pt:i ¼ ði þ tÞ%M.
The set distribution is defined by:

xðiÞ [O:s:t , d:i ¼ pt:s , i%M ¼ ðsþ tÞ%M;

where O.s.t is the set of data elements that are assigned to the process ðs; tÞ.
For m ¼ 9 and M ¼ 3 the data distribution is shown in the Figure 1.
There are again three stages defined by the following local postconditions:

R0:s:t : ðux ¼ u:x6ðVi : i [O:s:t : xxðiÞ ¼ x� xðiÞÞÞ
R1:s:t : t 6¼ 0VðVi : i [O:s:t : lðiÞ ¼ li:xÞ
R2:s:t : ðlx ¼ ðLm�1 f Þ:xÞ:

The first and the last stages may be computed using a tree-like computation, with
slight modification over the classic one. The difference is that a different numbering
of the processes is used.

20 NICULESCU

For example, for ux computation, we may consider the following derivation:

Y
i : 0 � i < m : xxðiÞ

� �

¼ fVi; 9!ðs; tÞ such that i%M

¼ ðsþ tÞ%M6i%M2 ¼ s �M þ ðsþ tÞ%Mg�Y
s; t : 0 � s; t < M :

�Y
i : 0 � i < m6i%M

¼ ðsþ tÞ%M6i%M2 ¼ s �M þ ðsþ tÞ%M : xxðiÞÞ
��

¼ fO:s:t ¼ ðVi : 0 � i < m6i%M ¼ ðsþ tÞ%M : iÞg�Y
s; t : 0 � s; t < M :

�Y
i : i [O:s:t6i%M2

¼ s �M þ ðsþ tÞ%M : xxðiÞ
��

:

The postconditions for the partial products are:

R01:s:t : ux:s:t ¼
Y

i : i [O:s:t6i%M2 ¼ s �M þ ðsþ tÞ%M : xxðiÞ
� �

:

So, we can conclude that

ux ¼
Y

i : 0 � i < m : xxðiÞ
� �

¼
Y

s; t : 0 � s; t < M : ux:s:t
� �

:

The invariant is constructed using a variable k, which is initialized first with
s ?M þ ðsþ tÞ%M; the progress is made by increasing the variable k with M2. The
final value is obtained by multiplication of the partial products. So, the time
complexity is the same as for the variant 1.
This derivation can be also obtained starting from the definition of the

corresponding YInd function: YInd:i:k ¼ ðk; ði � kÞ%MÞ; in this case, the corre-
sponding partial postconditions are:

R01:s:t : ux:s:t ¼
Y

i : 0 � i < m6YInd:i:ðði=MÞ%MÞ ¼ ðs; tÞ : xxðiÞ
� �

;

which are equivalent with those written above.
In what follows, we discuss about the second stage, in more detail.
As for matrix-matrix multiplication, we consider two sub-stages: one for partial

computations, and one for combining the partial computations.
Each row ðs; :Þ computes the values lðiÞ; Vi : 0 � i < m6d:i ¼ s.

Figure 1. The data distribution for m ¼ 9 and M ¼ 3.

ON DATA DISTRIBUTIONS IN THE CONSTRUCTION OF PARALLEL PROGRAMS 21

The postcondition R1:s:t may be rewritten as:

R1:s:t : t 6¼ 0VðVi : i [O:s:t : lðiÞ ¼ ux=xxðiÞ � 1=prod:i:mÞ;

where prod:i:m ¼ ð
Q

j : 0 � j < m6i 6¼ j : ðxðiÞ � xð jÞÞÞ.
To compute the products prod:i:m we split them in M products. Each of these

subproducts corresponds to the set of elements assigned to a process.
So, we rewrite the products prod:i:m as:

prod:i:m

¼ frange splitinggY
t : 0 � t < M :

Y
j : j [O:s:t6i 6¼ j : ðxðiÞ � xð jÞÞ

� �� �

¼ fð j [O:s:t , 0 � j < m6j%M ¼ ðsþ tÞ%MÞ6s ¼ d:igY
t : 0 � t < M :

Y
j : 0 � j < m6d:j ¼ pt:ðd:iÞ6i 6¼ j : ðxðiÞ � xð jÞÞ

� �� �

¼
n
parprod:i:t ¼not

Y
j : 0 � j < m6d:j ¼ pt:ðd:iÞ6i 6¼ j : ðxðiÞ � xð jÞÞ

� �o
Y

t : 0 � t < M : parprod:i:t
� �

:

The values prod:i:m are obtained using a tree-like computation on each row.
The invariants for partial products computations are defined by introduction of

the variable k, which is incremented by M:

P1:s:t : P1:0:s:t6P1:1:s:t

P1:0:s:t : 0 � k < m6k%M ¼ 0

P1:1:s:t : ðVi : 0 � i < k6d:i ¼ s : pprðiÞ ¼ parprod:i:tÞ:

The algorithm for partial products computation is defined by the following
parameterized processes:

S.s.t ::
j½ pprði : 0 � i < mÞ: array of real;

aði : 0 � i < mÞ: array of real;
for all i : i [O:s:t:

aðiÞ :¼ xðiÞ;
pprðiÞ :¼ 1

lla rof
fðVi : i [O:s:t : aðiÞ ¼ xðiÞÞg
k :¼ 0; fP1:qðk :¼ 0Þg
do ðk 6¼ mÞ?

RestoreP1:1:s:t fP1:1:s:tðk :¼ kþMÞg
; k :¼ kþM fP1:s:tðk :¼ kþMÞg

od
�j

22 NICULESCU

RestoreP1.1.s.t ::
j½

C0:s:t faðsþ kÞ ¼ xðsþ kÞg
;S0.s.t
fpprðsþ kÞ ¼ ð

Q
i : i [O:s:t6i 6¼ sþ k : aðsþ kÞ � aðiÞÞg

�j

The C0:s:t and S0:s:t processes are presented in Appendix B.

4.3.1. Time complexity. For this variant, the time complexity for the second stage is:

T :p:m ¼ m

M

h
aþ 2

m

M
þ log2 Mðaþ 1Þ

i
þ 2

m

M

¼ 2
m2

p
þ m

M
ðlog2 M þ 2Þ þ a

ð1þ log2 MÞ
M

m:

The communication complexity is lower than that for the previous algorithm.

Remark:

. Both variants are built starting from specifications and using correct derivation
rules.

. Different types of distributions lead to different algorithms.

. The second algorithm can be used in both cases: p � m, or p > m and it have a
lower communication complexity.
If p > m the advantage of using the second algorithm is obvious.
If p � m, the comparison between time complexities in the two cases leads to the
conclusion that

a > 3:5 ðtrue in many caseÞ
) T set-distribution < T simple-distribution; VM � 4:

If M is greater, the inequality is true even if a is smaller.
. If we do not consider an ideal communications network (if we consider a

hypercube, or a mesh), the second algorithm is even much efficient.

5. Conclusions

Static distributions of arrays and matrices, and their implications in the construction
of parallel programs are discussed. We have defined a new kind of distributions,
based on set-valued mappings.
Counting communications before developing the program enables the evaluation

of the distributions impact on the resulted program. This technique allows us to
choose the best distribution from the beginning. We use matrix-matrix multiplication

ON DATA DISTRIBUTIONS IN THE CONSTRUCTION OF PARALLEL PROGRAMS 23

case to emphasize this. The obtained results are independent of any communication
network.
The algorithm for Lagrange interpolation polynomial developed starting from set

distribution is better than the algorithm based on simple distribution.
If the number of processes is greater than the data input size, it is more convenient

using set distribution. Even if the processors number does not exceed the data input
size, we may define more processes than processors, and map more processes to one
processor; that leads to overlapping computation and communication.
Generally, if each datum appears more than once in the local postconditions,

using set distributions we may get better results than using simple distributions. The
data replication was used before, but not in a formalized way. This formalism
introduced here, based on set-valued mappings, helps deriving parallel programs in a
formal way, and also allows the evaluation of communication costs before program
development; this leads to the possibility of choosing the best distribution.
Also, the applications are not always so regular, and using set distributions does

not mean always adding a new dimension in the organization of the processes.
We conclude that the distributions determine the construction of parallel pro-

grams, and the set distributions can lead to efficient and general parallel algorithms.

Appendix A

C0:q :: S0:q ::
j½ j½ for all i : i [O:q :

par u : 0 � u < p6u 6¼ q : for all u : 0 � u < p :
u!aðkþ qÞ ftransmissiong if ði 6¼ kþ uÞ?

rap prðiÞ :¼ prðiÞ � ðaðiÞ � aðkþ uÞÞ
; for all u : 0 � u < p6u 6¼ q : fi
v?aðkþ uÞ freceptiong lla rof

lla rof lla rof
�j �j

Appendix B

C0.s.t ::
j½ S0.s.t ::

if ðt ¼ 0Þ? j½ pprðsþ kÞ :¼ 1;
par v : 0 < v < M : for all j : j [O:s:t :

ðs; vÞ!aðkþ sÞ if ð j 6¼ sþ kÞ?
rap pprðsþ kÞ :¼ pprðsþ kÞ � ðaðsþ kÞ � að jÞÞ

½ �ðt 6¼ 0Þ? fi
ðs; 0Þ?aðkþ sÞ lla rof

fi �j
�j

24 NICULESCU

References

1. R. C. Agarwal, F. G. Gustavson, S. M. Balle, M. Joshi, and P. Palkar. A High Performance Matrix

Multiplication Algorithm for MPPs, PARA’95, pp. 1–7.

2. E. W. Dijkstra. A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.

3. I. Foster. Designing and Building Parallel Programs, Addison-Wesley, 1995.

4. L. Barbara and J. Guttag. Abstractions and Specification in Program Development, Massachusetts

Institute of Technology, 1986.

5. C. A. R. Hoare. An Axiomatic Basis for Computer Programming, Communications of the ACM,

12(10):576–580, 1969.

6. L. D. Loyens. A Design Method for Parallel Programs, Technische Universiteit Eindhoven, 1992.

7. C. Morgan. Programming from Specifications, Prentice Hall, 1990.

8. D. B. Skillicorn and D. Talia. Models and Languages for Parallel Computation, ACM Computer

Surveys, 30(2):123–136, June 1998.

9. J. R. Smith. The Design and Analysis of Parallel Algorithms, Oxford University Press, 1993.

10. E. F. Van de Velde. Concurrent Scientific Computing, Spring-Verlag, New-York Inc., 1994.

11. H. S. Wilf. Algorithms and Complexity, Mason & Prentice Hall, 1985.

ON DATA DISTRIBUTIONS IN THE CONSTRUCTION OF PARALLEL PROGRAMS 25

