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Abstract

The paper presents parallel algorithms for Lagrange and Hermite interpolation
methods formally derived from specifications, and using set-distributions. Set-dis-
tributions are based on set-valued mappings, and they assign a data object to more
than one process. The derivation from specifications assures the correctness, and
the set-distributions assure the efficiency of the programs. The obtained parallel
algorithms have very good time complexities and speeds-up, and they are also cost-
efficient. We consider the number of processes p to be a parameter of the algo-
rithms, so, bounded parallelism is considered. The derivation of the algorithms is
not ruled by any particular interconnection network. The possible mappings on dif-
ferent networks could be evaluated. The performance analysis is done considering
a full-connected network, and other two interconnection networks: hypercube and
multi-mesh hypercube, which preserve the cost-efficiency of the algorithms.

Key words: parallel computation, polynomial interpolation, Lagrange, Hermite,
data-distribution, complexity, cost, efficiency, formal derivation
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1 Introduction

Lagrange and Hermite interpolations are well known methods of polynomial
interpolation, and at the same time they are of great importance since they
are widely used. Their parallelization has been discussed before, and parallel
algorithms with good time complexities have been obtained [1,7,8,2,11,20,21].
But for these parallel algorithms the case of bounded parallelism (the number
of processors is limitated) was not explicitely analyzed, and also they are not
formally derived. For simple interpolation (the information is the values of
the function in n points) with Lagrange or Newton representation, very good
complexities (O(log n)) have been obtained, provided that large number of
processors are used - polynomial in the size of the problem (n) [1,14,9]. If the
number of processor was limited to n, and special interconnection networks
used (star graph, k-ary cube, tree augmented with ring connections, systolic),
then complexities equal to O(n) have been obtained [11,20,21]. Also, there
is an algorithm with a complexity equal to O(

√
n) using a multi-mesh of

k2(k = n2) processors presented by M. De [4]. For the more general problem
of Hermite interpolation, where the input is a set of distinct points (m), and
corresponding to each point, prescribed values for the function and all its
derivatives up to some arbitrary order (r), Egecioglu et al. [7,8] have described
a parallel algorithm with a O(log m + log2 r) complexity, provided that more
than O(m2r) processors are used.

This paper presents a formal derivation of parallel algorithms for polynomial
interpolation, considering bounded parallelism, thus a more practical approach.
It means that we will consider the number of the processes p to be a parameter
of the parallel programs derivation. Parallel algorithms for polynomial inter-
polation based on Lagrange and Hermite methods are derived starting from
formal specifications and using set-distributions. The obtained algorithms are
cost-efficient and correct by construction. If the number of processor is large
enough (m2), then the logaritmic complexities are achieved. The algorithms
are not derived for a particular interconnection network; we start by consid-
ering a full-connected network, and then we analyze the mappings onto two
networks: hypercube and multi-mesh hypercube.

A process aiming at building software that is correct by construction is es-
sential for parallel programming, since the verification of parallel programs
correctness after construction seems too difficult for practical use [22]. Simi-
lar techniques with those used for sequential programming may be used for
parallel programming, too.

Set-distributions [19], based on set-valued mappings, can be used with good
results in parallel processing. These distributions assign a data object to more
than one process; very good results are obtained especially when a datum is
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used in more than one computation.

The derivation of the algorithms is done in a formal way using a method
for parallel programs design, based on derivation from specification [18]. The
method is based on that presented in [17]. The model considers a parallel
program as a number of cooperating parameterized processes with similar
structures. The first part of the paper briefly explains this method.

1.1 Notations

A notation for quantifications is used:

(�k : Q : E)

where � is a quantifier (
∑

,∀, max, . . .), k is the list of bound variables, Q is the
predicate describing the domain of the bound variables, and E is an expression.
Function application is denoted by an infix, left associative dot ‘.’ operator.
The set {∀i : 0 ≤ i < n : i} is denoted by n. For the integer remainder we
use the symbol %, and p|n means that n is divisible by p (∀n, p ∈ N).

Also, the following proof notation is used:

expression1

= {explanations}

expression2

. . .

Program notation is given in Appendix A.

1.2 Program Derivation

A parallel program is considered to be formed by many parameterized pro-
cesses S.q(0 ≤ q < p), which are running in parallel. There is no shared
memory. A parameterized process is much like a procedure in sequential pro-
gramming. The difference is that, instead of having only one instantiation in
a sequential program, we have many instantiations in a parallel program.

In sequential programming, the Hoare-triple [6]

{Q}S{R}
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is commonly used to denote a formal specification of a program S. This nota-
tion means that if the program S starts in a state described by the predicate
Q, and if the program terminates, then, upon completion, the predicate R is
satisfied.

For specifying a parallel program, both pre- and post-conditions, Q and R,
are split up as conjunctions of p(p > 0) local pre- and post-conditions, and a
process is associated with each such pair:

{Q.q}S.q{R.q},∀q : 0 ≤ q < p.

So, we may specify a parallel program as follows:

|[ {Q}

par q : 0 ≤ q < p :

{Q.q}

S.q

{R.q}

rap

{R}]|

A parameterized specification usually refers to some local variables represent-
ing a part of a distributed object. Therefore, the parameters of a specification
are q, p and a data distribution D. Many choices are possible for D, each of
them having an impact on the complexity of the parallel program.

Such a specification forms the starting point for a parallel program deriva-
tion, a formal construction of parameterized processes constituting a parallel
program.

Our approach for obtaining a parameterized process S from a functional spec-
ification is similar to the methods used in sequential programming. It is based
on the axioms and inference rules specified in Appendix B. These methods ob-
tain an invariant from a specification, in a calculational style. The programs
are derived by calculating the necessary conditions to maintain the invariant.
Because we have parameterized specifications, we will derive parameterized
invariants.

A global specification requires some form of coordination between processes,
so, in order to satisfy the specification, several processes have to interact with
one another, via message exchanging.
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A parameterized process is refined into a sequence of ordinary sequential pro-
grams and communication processes; communication is based on message-
passing. A parallel program is, thus, decomposed into layers of process in-
stances. All the communications occur between instances of the same param-
eterized communication process, and such a process is called communication
closed.

1.3 Performance Analysis

Time-Complexity

For a parallel program with the input size n and the number of processes p,
we consider that the time complexity is expressed by:

T.p.n = Tf .p.n + α ∗ Tc.p.n (1)

where

• Tf .p.n = the computation complexity (measured in tf );

• Tc.p.n = the communication complexity (measured in tc);

• tc = the time required to communicate a single value;

• tf = the time required to execute a single basic computational operation;

• α =
tc
tf

.

The communication complexity depends on the communication network. Dif-
ferent kinds of networks may be considered: ideal(full-connected) intercom-
munication network, chain, mesh, toroid, hypercube,. . .; the communication
processes have to be evaluated depending on their structure. In what it fol-
lows, we present two interconnection networks for which we will analyze the
mapping of our algorithms.

Hypercube-Mesh Network

The first network on which we analyse the mapping of our algorithms is the
hypercube. We consider an equivalent variant of it, in which each node is
labeled with a pair of numbers (i, j), 0 ≤ i < 2m, 0 ≤ j < 2n, so we have
2m ∗ 2n nodes . We call this variant hypercube-mesh, and it is characterized by
the pair (m, n), m, n ∈ N∗ (we denote it by HM(m,n)).

In HM(m,n), between two nodes (ix, jx) and (iy, jy)

(1) there is a hypercube link iff
(a) ix = iy, and
(b) jx and jy differ by one bit position in their binary representation;
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(2) there is a hypercube link iff
(a) jx = jy, and
(b) ix and iy differ by one bit position in their binary representation.

We may consider that we have 2m connected hypercubes of order n, or 2n

connected hypercubes of order m. The total number of nodes is equal to
2m ∗2n = 2m+n, and the diameter is m+n. An example is shown in Appendix
C, Figure .1.

Theorem 1 The interconnection network hypercube-mesh HM(m,n) is equiv-
alent to the network hypercube Hm+n.

Proof: Each node (i, j) from HM(m,n) corresponds to the node i ∗ 2n + j in Hm+n.
(Vice versa, a node x of the hypercube coresponds to a node (ix, jx) in HM(m,n),
where ix has its binary representation equal to the first m bits from the binary
representation of x, and jx has its binary representation equal to the last n bits
from the binary representation of x). For example, if we have the hypercube H5,
and we consider m = 2 and n = 3, then the node 011002 = 12 in H5 corresponds to
the node (012, 1002) = (1, 4) in HM(2,3). Also, if x and y are two nodes in Hm+n,
and they differ by one bit position in their binary representation (there is a link
between them), then between their correspondents (ix, jx) and (iy, jy) we have the
relation (1) or (2) – so there is a link between them, too.

Multi-Mesh Hypercube Network

A Multi-Mesh Hypercube Network [16] is characterized by a triplet (r, c, n),
where r represents the row dimension of a torus, c the column dimension of
the torus, and n the dimension of a hypercube.

Between two nodes (i1, j1, k1) and (i2, j2, k2), where 0 ≤ i1 < r, 0 ≤ i2 < r, 0 ≤
j1 < c, 0 ≤ j2 < c, 0 ≤ k1 < 2n, and 0 ≤ k2 < 2n:

(1) there is a torus link iff:
(a) k1 = k2, and
(b) (i1 = (i2 + 1)%r ∨ i2 = (i1 + 1)%r) ∧ j1 = j2 ∨
(j1 = (j2 + 1)%c ∨ j2 = (j1 + 1)%c) ∧ i1 = i2;

(2) there is a hypercube link iff:
(a) i1 = i2, and (b) j1 = j2, and
(c) k1 and k2 differ by one bit position in their binary representation.

The total number of nodes is equal to r ∗ c ∗ 2n, and the diameter is r ∗ c ∗ n.
An example for OMMH(2, 2, 3) is shown in Appendix C, Figure .2.

For this network, which is scalable, there are practical realizations with optical
interconnections OMMH [16].
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Cost

In the analysis of the parallel programs, we also need to evaluate the total
amount of work, and for that we use the cost measure [13].
The cost C.p of a parallel algorithm using p processes is defined by:

C.p.n = T.p.n ∗ p, (2)

where T.p.n is the time complexity of the parallel algorithm, and n is the
size of the problem. A parallel algorithm is considered cost-optimal if C.p.n =
O(Ts.n), where Ts.n is the complexity of the best known sequential algorithm
of the problem. And, a parallel algorithm is cost-efficient if C.p.n = O(Ts.n ∗
(log2 n)k), k ∈ N.

1.4 Distributions

Two kinds of data distributions can be used:

• simple distributions, defined by single-valued mappings;

• set-distributions, defined by set-valued mappings.

Definition 1 D = (δ, A, B) is called a simple distribution if A and B are
finite sets, and δ is a mapping from A to B. Set A specifies the set of data
objects (an array with n elements), and set B specifies the set of processes,
which is usually p. The function δ assigns each index i(0 ≤ i < n), and its
corresponding element to a process number [17].

Definition 2 A set-distribution for n input objects on p processes is defined
by a set–valued mapping θ : n ( p; θ.i represents the set of processes contain-
ing the data object i [19].

Examples of set-distributions, when p > n are:

θl̃inear.i = {∀k : 0 ≤ k < p/n : i(p/n) + k}, if n | p

θc̃yclic.i = {∀k : 0 ≤ k < p/n : kn + i}, if n | p

When the processes’ number is greater than the data input size, it is desirable
to assign a datum to more than one process. Also, when a data object is used
in more than one computation, this kind of distribution may lead to efficient
algorithms.

There are cases when, in order to express more easily the sets of the processes
that contain a datum, a set-distribution may be defined using a simple distri-
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bution, which is, for example, replicated. More formally, such a set-distribution
is defined by considering the processes organized as a M × N matrix of pro-
cesses (p = M ∗ N), and by using simple distributions: δ0 : n → M and
δt : M → M (the expression of δt depends on t, 0 ≤ t < N), such that xi

belongs to (s, t) iff δ0.i = δt.s. If δt = 1M , then δ0 is simply replicated on
columns.

2 Lagrange Polynomial

We consider the problem of evaluating the Lagrange polynomial on a given
point, and we formally derive a parallel algorithm for it.

2.1 The Problem

Let [a, b] ⊂ R, xi ∈ [a, b], 0 ≤ i ≤ m, such that xi 6= xj for i 6= j and
f : [a, b] → R.

Lagrange interpolation polynomial is defined as [3]:

(Lmf).x =
(∑

i : 0 ≤ i ≤ m : li.x ∗ f.xi

)
(3)

where li, 0 ≤ i ≤ m are the fundamental Lagrange interpolation polynomials:

li.x =
(x− x0) . . . (x− xi−1)(x− xi+1) . . . (x− xm)

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xm

=
u.x

(x− xi)
· 1

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xm)

(4)

where u.x = (
∏

i : 0 ≤ i ≤ m : (x− xi)).

For a given value x, the global postcondition for the computation of (Lmf).x
is

R : lx = (Lmf).x

2.2 Derivation

Let p = M ∗M and all the processes be identified by pairs (s, t), 0 ≤ s, t < M .
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s\t 0 1 2

0 x0, x3, x6 x1, x4, x7 x2, x5, x8

1 x1, x4, x7 x2, x5, x8 x0, x3, x6

2 x2, x5, x8 x0, x3, x6 x1, x4, x7

Fig. 1. The data distribution for m = 8 and M = 3.

We consider a cyclic distribution δ : m + 1 → M, δ.i = i%M , and M permu-
tations πt : M → M, 0 ≤ t < M , defined by πt.i = (i + t)%M .

The set-distribution is defined by:

xi ∈ O.s.t ⇔ δ.i = πt.s ⇔ i%M = (s + t)%M (5)

where O.s.t is the set of data elements that are assigned to the process (s, t).

For m = 8 and M = 3 the data distribution is shown in Figure 1.

There are three stages defined by the following local postconditions:

R0.s.t : (ux = u.x ∧ (∀i : i ∈ O.s.t : xx[i] = x− xi))

R1.s.t : (∀i : i ∈ O.s.t : l[i] = li.x)

R2.s.t : (lx = (Lmf).x)

The first and the last stages represent a product and a summation, and they
may be computed using tree-like computations, with slight modification over
the classic one. Two stages are used: a computation on columns and one on
rows.

In what follows, we discuss about the second stage, in more details.

We will consider two sub-stages: one for partial computations, and one for
combining the partial computations.

Each row (s, .) computes the values l(i),∀i : 0 ≤ i ≤ m ∧ δ.i = s.

The postcondition R1.s.t may be rewritten as:

R1.s.t : (∀i : i ∈ O.s.t : l(i) = ux/xx[i] ∗ 1/prod.i.m)

where prod.i.m = (
∏

j : 0 ≤ j ≤ m ∧ i 6= j : (xi − xj)).

To compute the products prod.i.m, we split them in M products. Each of
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these subproducts corresponds to the set of elements assigned to a process.
The elements (xi) of O.s.0 are sent by broadcast onto the row s.

Hence, we rewrite the products prod.i.m as:

prod.i.m

= {range spliting}

(
∏

t : 0 ≤ t < M : (
∏

j : j ∈ O.s.t ∧ i 6= j : (xi − xj)))

= {(j ∈ O.s.t ⇔ 0 ≤ j ≤ m ∧ j%M = (s + t)%M) ∧ s = δ.i}

(
∏

t : 0 ≤ t < M : (
∏

j : 0 ≤ j ≤ m ∧ δ.j = πt.(δ.i)

∧i 6= j : (xi − xj)))

= {parprod.i.t
not
= (

∏
j : 0 ≤ j ≤ m ∧ δ.j = πt.(δ.i)

∧i 6= j : (xi − xj))}

(
∏

t : 0 ≤ t < M : parprod.i.t)

The values prod.i.m are obtained from parprod.i.t (0 ≤ t < M), using a
tree-like computation on each row.

The invariants for partial products computations are defined by introducing
the variable k, which is incremented by M :

P1.s.t : P1.0.s.t ∧ P1.1.s.t

P1.0.s.t : 0 ≤ k ≤ m ∧ k%M = 0

P1.1.s.t : (∀i : 0 ≤ i < k ∧ δ.i = s : ppr[i] = parprod.i.t).

The parameterized processes S.s.t, 0 ≤ s, t < M for partial products compu-
tation are presented in Appendix B.

2.3 Time Complexity and Cost

First we consider that we have an ideal interconnection network, and then we
analyze the cases of hypercube-mesh and multi-mesh hypercube networks.

Lemma 1 The time complexity for the second stage is:

TR1.p.m = 2
(m + 1)2

M2
+

m + 1

M
(log2 M) + α

(1 + log2 M)

M
(m + 1). (6)
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And the parallel algorithm for the second stage is cost-efficient.

Proof: The values prod.i.m are obtained using a tree-like computation on
each row, which means that the time complexity for these computations is:(

m + 1

M
log2 M

)
(α + 1)

For the broadcast communications on rows, and for the computation of the
partial products parproduct.i.t, the time complexity is:

m + 1

M

[
α + 2

m + 1

M

]

If we add these complexities, we obtain the time complexity TR1.p.m.

The time complexity in the sequential case is O(m2) and the cost of the parallel
algorithm (the number of processes is p = M2) is

CR1.p.m = TR1.p.m ∗M2 = O(m2 + m ∗M ∗ log2 M)

The maximal value for M is m, so, the algorithm is cost-efficient.
If M < m/ log2 M , then the algorithm is cost-optimal.

The values prod.i.m are independent of x (the current point where the function
is approximated), so their computation could be separated and executed only
once, if more than one point x is considered. Sequentially, their computation
is the most costing one, and the corresponding parallel computation is cost-
efficient.

Theorem 2 The parallel algorithm for Lagrange interpolation is cost-efficient.

Proof: The first and the third stages execute tree-like computations, and
these kinds of computations are cost-efficient [13]. The second stage of com-
putation is cost-efficient (Lemma 1), and thus the global parallel algoritm is
cost-efficient.

If p = m2, the time complexity of the parallel program is O(log2 m), which is
equal to the previous results [1,8], where more than m2 processors are used.
Here bounded parallelism has been considered, and the formally derived pro-
gram is cost-efficient.

2.3.1 Mappings

Tree-like computations are executed on rows and columns. Generally, the tree-
like computations are efficiently implemented on hypercube interconnection
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networks. On a hypercube with N nodes, a tree-like computation is exe-
cuted with (α + 1) log2 N time-complexity, and a broadcast is executed with
α(log2 N) time-complexity.

If we consider a hypercube-mesh interconnection network HM(n,n), where n
is such that M = 2n, then for our algorithm, the time complexity and also
the cost are preserved. (We have hypercubes on each row and also on each
column.)

We may also consider a multi-mesh hypercube interconnection network char-
acterized by the triple (k∗2n, k, n) (M = k∗2n, k ≥ 1, n ≥ 0), and the mapping
(s, t) → (s, t/2n, t%2n). In this case, a tree-like computation on columns could
not be executed with (α+1)(log2 M) time-complexity, but with (α+1)(M/2)
time-complexity, since on columns there are only ring connections. On rows,
the tree-like computations and the broadcast could be executed with O(k+n)
time-complexity. There are k hypercubes of order n on each row; so first,
partial computations are executed on each hypercube (time complexity is
(α + 1)n), and then, they are combined using the ring connections (time-
complexity k/2(α + 1)). If k ∈ O(logt

2 m), t ≥ 0, then the algorithm remains
cost-efficient.

3 Hermite Interpolation

3.1 The Problem

Let [a, b] ⊂ R, xi ∈ [a, b], 0 ≤ i < m, such that xi 6= xj for i 6= j, rk ∈ N, k ∈
m + 1 and f : [a, b] → R such that ∃f (j).xk,∀k ∈ m + 1, 0 ≤ j ≤ rk.

Hermite interpolation polynomial is defined as [3]:

(H(n)f).x =
(∑

k : 0 ≤ k ≤ m :
(∑

j : 0 ≤ j ≤ rk : hkj.x ∗ f (j).xk

))
(7)

where m + r0 + . . . + rm = n, and hkj, 0 ≤ k ≤ m, 0 ≤ j ≤ rk are the
fundamental Hermite interpolation polynomials:

hkj.x =
(x− xj)

j

j !
∗ uk.x∗∑ ν : 0 ≤ ν ≤ rk − j :

(x− xk)
ν

ν !

[
1

uk.x

](ν)
∣∣∣∣∣
x=xk

 (8)

where uk.x =
(∏

i : 0 ≤ i ≤ m ∧ i 6= k : (x− xi)
ri+1

)
.
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3.2 Derivation

The global postcondition for the computation of the value H(n)f.x in the given
point x is

R : Hf = (H(n)f).x

We consider p = M ∗N processes, where M ≤ m + 1, N ≤ ( min k : 0 ≤ k ≤
m : rk), and the processes are identified by the pairs (s, t), 0 ≤ s < M, 0 ≤
t < N .

The input data: x, xk, rk(k ∈ m + 1), f [k, j] = f (j).xk (k ∈ m + 1, j ∈ rk + 1))
are distributed as folllows:

• x is assigned to all the processes,
• xk, rk(k ∈ m + 1) are local to the process (s, t) iff δ0.k = s ( δ0 : m + 1 → M

is a simple distribution, so we have a set-distribution with δt = 1M),
• f [k, j](k ∈ m + 1, j ∈ rk + 1) are assigned to the process (s, t) iff δ0.k = s

and δk
1 .j = t (where δk

1 : rk + 1 → N,∀k ∈ m + 1 are simple distributions).

From the global postcondition we can obtain the local postconditions, for
0 ≤ s < M, 0 ≤ t < N :

R.s.t : s = t = 0 ⇒ Hf = (H(n)f).x

The local postconditions are split into three partial postconditions:

R0.s.t ∧R1.s.t ∧R2.s.t ⇒ R.s.t

R0.s.t : (∀(k, j) : (k, j) ∈ local.s.t : h[k, j] = hkj.x)

R1.s.t : lHf.s.t = (
∑

k, j : (k, j) ∈ local.s.t : h[k, j] ∗ f [k, j])

R2.s.t : s = t = 0 ⇒ Hf = (
∑

s, t : 0 ≤ s < M ∧ 0 ≤ t < N : lHf.s.t)

where local.s.t = {∀k, j : 0 ≤ k ≤ m∧0 ≤ j ≤ rk∧δ0.k = s∧δk
1 .j = t : (k, j)}.

Computation for R1.s.t and R2.s.t

The postconditions R1.s.t and R2.s.t are easily satisfied because they only
imply simple summations: R1.s.t implies partial sums, and R2.s.t leads to the
global sum. The global sum may be obtained by computing the partial sums
of each row, and finally the global sum may be computed using a tree-like
computation on the first column.
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The time complexity of the computations for R1.s.t and R2.s.t may be eval-
uated as:

TR1+R2.p.m.r =
(m + 1)(r + 1)

M ∗N
+ (log2 M + log2 N)(1 + α), (9)

where r = (max i : 0 ≤ i ≤ m : ri).

Computation for R0.s.t

We also split this postcondition into three partial postconditions:

R01.s.t ∧R02.s.t ∧R03.s.t ⇒ R0.s.t

R01.s.t : (∀k : δ0.k = s : ux[k] = uk.x)

R02.s.t : (∀k : δ0.k = s : u[k] = uk.xk)

R03.s.t : (∀(k, j) : (k, j) ∈ local.s.t : h[k, j] = hkj.x)

Each of them will be analyzed in what follows.

Computation for R01.s.t

The postcondition R01.s.t may be rewritten as:

R01.s.t : ux[k] = ux/px.k.(rk + 1) ∀k : δ0.k = s,

where

ux =
(∏

i : 0 ≤ i ≤ m : (x− xi)
ri+1

)
, and px.k.j = (x− xk)

j

For computing the powers px.k.j = (x − xk)
j a parallel-prefix algorithm [13]

on the row (δ0.k, ·) may be used. We impose that δk
1 .(rk) = 0, and so the value

px.k.(rk+1) will be available in the process (δ0.k, 0). Then, the product ux may
be computed using local computations followed by a tree-like computation on
the first column. So, the time complexity for this stage is:

T.p.m.r = log2 N
(m + 1)(r + 1)

M ∗N
(α + 1) +

m + 1

M
+ log2 M(α + 1) (10)

Computation for R02.s.t

The postcondition R02.s.t implies more complex communications, so it has
to be more carefully analyzed. The values xk are distributed using a set-
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Fig. 2. Generalized diagonals for M = 9 and N = 3.(The matrix is 90◦ rotated.)

distribution defined by the simple distributions δ0 and δt = 1M . We are going
to use this, in order to obtain an efficient algorithm for uk.xk computation.
We try to split the postconditions such that all the processes to be used:

(
∏

i : 0 ≤ i ≤ m ∧ i 6= k : (xk − xi)
ri+1)

= {range splitting }

(
∏

t : 0 ≤ t ≤ N :

(
∏

i : 0 ≤ i ≤ m ∧ i 6= k ∧ condition.s.t.i : (xk − xi)
ri+1))

The condition introduced by the predicate condition.s.t.i has to specify which
values xi are used by the process (s, t). For the sake of simplicity, we assume
that N |M . So, we may think that the rows are grouped in subgroups of N
rows. We would like to group together the processes which are on the same
“generalized diagonal”. Two processes (s1, t1) and (s2, t2) are on the same
generalized diagonal iff (s1 − t1)%N = (s2 − t2)%N . (If we do not make
the assumption N |M , the formula for defining a “generalized diagonal” is
more complicated, but we are free to choose the values M and N under the
assumption M ∗N = p.) Figure 2 shows the generalized diagonals for the case
M = 9 and N = 3. (For saving space, the matrix is 90◦ rotated, so the rows
are shown vertically.)

Based on this, we choose condition.s.t.i ≡ (s− t)%N = δ0.i%N .

(
∏

i : 0 ≤ i ≤ m ∧ i 6= k : (xk − xi)
ri+1)

= { for given s and i ∃! t : (s− t)%N = δ0.i%N}

(
∏

t : 0 ≤ t ≤ N :

(
∏

i : 0 ≤ i ≤ m ∧ i 6= k ∧ (s− t)%N = δ0.i%N : (xk − xi)
ri+1))

So, the values xk, rk (∀k : δ0.k = 0) local to the processes (0, t) are received by
the processes: (1, 1), (2, 2), (3, 0), (4, 1), (5, 2),(6, 0),(7, 1), (8, 2). The values
xk, rk(∀k : δ0.k = 1) local to the processes (1, t) are received by the processes:
(2, 1), (3, 2), (4, 0), . . ., (8, 1), (0, 2); and so on...

In the case of an ideal interconnection network, the communication process is
described in Figure 3; we have denoted by Xs a vector that contains all the
points xi for which δ0.i = s (and similar for Rs).
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C0.s.t ::

|[

{local values are sent to the processes on the same generalized diagonal}

par u : 0 < u < M ∧ u 6= s ∧ (u− t)%N = s%N :

(u, t) ! (Xs, Rs)

rap

par u : 0 < u < M ∧ u 6= s ∧ u%N = (s− t)%N :

(u, t) ? (Xu, Ru)

rap

]|

Fig. 3. The communication process for u[k] computation.

Finally, the values uk.xk are obtained by using tree-like computations on rows

with a time complexity equal to Trow =
m + 1

M
log2 N(1 + α).

For an ideal interconnection network, the time complexity for computing uk.xk

may be evaluated as:

TR02.p.m.r = (Tf + αTc) + Trow

∼=
(r + 1)(m + 1)2

M ∗N
+ 2α

m + 1

M

M

N
+

m + 1

M
log2 N(1 + α)

=
(r + 1)(m + 1)2

M ∗N
+ 2α

m + 1

N
+

m + 1

M
log2 N(1 + α)

(11)

Sequentially, this computation can be done with a time complexity
Ts
∼= (r + 1)(m + 1)2. So, the speed-up is

SR02.p.m.r ∼= p/(1 + K)) (12)

where K is a number less than 2α/(r + 1) + (1 + α) log2 N/(m + 1).

If we want to hide the communication cost by overlapping communications
and computation, we may use an algorithm similar to a systolic one, in which
a communication step is followed by a computation step.
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Due to the fact that each datum is used here in more than one computation,
the advantage of using set-distributions is very important.

Computation for R03.s.t

First, we have to analyze the expression
[

1
uk.x

](ν)
∣∣∣∣
x=xk

.

We consider the following notations:

Dν
k =


1

uk.xk
, if ν = 0

1
(ν−1)!

[
1

uk.x

](ν)

|x=xk

, if ν > 0
(13)

Sν
k = (−1)ν

(∑
i : 0 ≤ i ≤ m ∧ i 6= k :

ri + 1

(xk − xi)ν

)
, (14)

SDj
k.x =

D0
k, if j = rk,

D0
k +

(∑
ν : 1 ≤ ν ≤ rk − j : (x−xk)ν

ν
Dk

ν
)
, if j < rk.

(15)

Then the Hermite interpolation polynomials may be computed by the follow-
ing formula:

hkj.x =
(x− xk)

j

j !
∗ uk.x ∗ SDj

k.x (16)

The products px.k.j = (x − xk)
j are computed at the stage of computation

for R01.s.t. The fractions pxf.k.j = (x− xk)
j/j! may be computed simulta-

neously with px.k.j = (x−xk)
j at the same stage (j! could be computed with

a parallel prefix computation, too).

Using the differentiation rules, the following equality can be proven:

Dν
k = D0

k ∗ Sν
k +

(∑
j : 1 ≤ j < ν :

Dj
k

j
∗ Sν−j

k

)
(17)

The sums Sν
k may be computed by using an algorithm similar to the algo-

rithm used for u[k] computations. In fact, these computations have to be done
simultaneously, because the same communications are necessary.

To compute the values hkj.x we need the values Dν
k and SDj

k.x. We initially
know the values D0

k and SDrk
k .x. The process (s, t), which is responsible for

computing hkj.x, is also responsible for computing SDj
k.x (δ0.k = s∧δk

1 .j = t).
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The computation of the values Dν
k , j ≤ rk is similar to a triangular system

solving. The processes on the row (δ0.k, ·) are used.

In order to balance the work-loading on processes, we choose for distributions
δk
1 to be cyclic distributions, defined by the following relations: δk

1 .j = (rk −
j)%N .

The time complexity for computation of the values hkj.x may be evaluated as:

TR03.p.m.r = O

(
m + 1

M
(r + 1)(1 + α) +

(m + 1)(r + 1)

MN

)
(18)

3.3 Time Complexity and Cost

We start again by considering a full-connected interconnection network, and
then we analyze the mapping on hypecube-mesh(hypercube) and multi-mesh
hypercube networks.

Theorem 3 The global time complexity of the parallel algorithm for Hermite
interpolation, described before is

T.p.m.r = O((r + 1)(m + 1)2/(M ∗N)) (19)

Proof: The time complexity results by summing the time complexities for
the computations described before: R1, R2, R01, R02, R03.

T.p.m.r

= {summing the partial time complexities}

TR1+R2.p.m.r + TR01.p.m.r + TR01.p.m.r + TR03.p.m.r

= {equations 9, 10, 11, 18}

O((r + 1)(m + 1)2/(M ∗N))

Theorem 4 The parallel algorithm for Hermite interpolation is efficient from
the cost point of view.

Proof: The computation for R1 and R2 are tree-like computations and they
are cost-efficient. For the computation of R0, the sequential algorithm has the
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time complexity Ts.n = O(r(m + 1)2).

CR0.p.m.r

= {equation 2}

TR0.p.m.r ∗ p

= {calculus}

O((m + 1)2(r + 1) + (m + 1)(r + 1) log N + (m + 1)(r + 1)N)

So, this computation is cost-optimal.
Together, these computations form a cost-efficient parallel algorithm.

The computations of the values uk.xk and Sj
k are the most costing ones, and

for them we have used the advantages brought by set-distributions. And, these
parallel computations are also cost-optimal. They are independent of the given
value x (Dν

k are also independent of x), and their computation could be sep-
arated, when more than one given point has to be considered.

We have chosen cyclic distributions (δk
1) on each row, but we didn’t impose

any conditions on the distribution δ0 : m + 1 → M . So, the distribution δ0

can be chosen to assure a balanced distribution not only for the xk values, but
also a balanced loading of the rows: the sums r.s = (

∑
k : δ0.k = s : rk) have

to be balanced. In this way, the execution time is improved.

The number of processors p = M ∗ N is bounded by the following relations:
M ≤ m + 1 and N ≤ r + 1; if M = m + 1 and N = r + 1 the time complexity
becomes O(m). The time complexity of the parallel algorithm presented in
[8] is O(log2 r + log m) but it is obtained by using a very large number of
processors – much more than m2 ∗ r; it is not cost-efficient.

We may consider p = M ∗M, M ≤ m + 1 processors, in which case the com-
putation for R0.s.t may use a distribution and an algorithm similar to those
used for Lagrange interpolation. In that case, the obtained time complexity is
O(r + log m), but the processors are not used very efficiently.

3.3.1 Mappings

If we consider a mapping on a hypercube-mesh network HM(m,n), such that
M = 2m and N = 2n, the complexities for tree-like and parallel prefix compu-
tations on rows and columns remain the same (they are executed on hyper-
cubes).

For u[k] computations, the communication process described in Figure 3 could
be implemented in the following way:
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There are two communication stages; first is executed on simple diagonals
(with N elements), and the second is formed by communications on columns.

We will use for these stages the fact that each column forms a hypercube
Hm, and that can be also seen as a hypercube-mesh HM(q,n) (M = NQ, Q =
2q, m = n+q). This means that we may consider a three dimensional hypercube-
mesh HM(q,n,n), and the mapping (s, t) → ((s/2n, s%2n), t).

Fig. 4. The first stage of the communication process for u[k] computations when
M = 8 and N = 4. The simple diagonals are connected by lines, and the commu-
nications of the values that are local to the processes (0, t) are marked.(For saving
space, the matrix is rotated, so the rows are shown vertically.)

In the first stage (Figure 4), the values (xk, rk) : δ0.k = s, (local to the pro-
cesses (s, t), 0 ≤ t < N), have to be sent to the processes: ((s + 1)%M, 1), . . .,
((s+N−1)%M, N−1) (they form a simple diagonal). Each node ((s/2n, x), t)
sends its local values to the node ((s/2n, (x + t)%2n), t) using the links of the
hypercube Hn formed by the nodes ((s/2n, ·), t). The time complexity of these
comunications is equal to n = log2 N . On different columns the communica-
tions is executed in parallel, and on one column there are M/N communica-
tions which can be done in parallel. So, the time complexity of this stage is

N log2 N
(

m + 1

M
2α
)
.

In the second stage, we consider communications on columns – Figure 5. On
each column t, there are M/N = Q nodes which belongs to the same gener-
alized diagonal d, 0 ≤ d < M . A broadcast from one of these nodes to the
others could be executed with a time complexity equal to log2 Q = q, since
it is a broadcast in the hypercube Hq with the nodes ((·, d%2n), t). There are
N broadcasts like these, which could be executed in parallel on each column,
and globally, there are M broadcasts to be done on each column. Hence, the

time complexity of the second stage is
M

N
log2

M

N

(
m + 1

M
2α
)
.

Globally, the time complexity of the communication process is

Tc.p.m.r =
(
N log2 N +

M

N
log2

M

N

)
m + 1

M

Based on these, we conclude that the mapping of the program on a hypercube

Fig. 5. Column communication in the second stage of the communication process
for u[k] computations; M = 8 and N = 4.
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preserves the cost-efficiency.

A multi-mesh hypercube network (N, N, q) (where M = N ∗ 2q) could also be
successfully used, if we consider the mapping (s, t) → (s%N, t, s/N). Similar
to the case of the hypercube mapping, the communication process for u[k]
computations is formed by two stages. In the first stage, the values local to
the node (x, t, s/N) are shifted on the column t of the corresponding torus,
such that after that operation they arrive to the node ((x+t)%N, t, s/N). The
size of each torus is N×N and the shifting operation is executed in parallel on
each column of each torus. The global time complexity of this stage is equal

to N
(

m + 1

M
2α
)
. The second stage is similar to that of the hypercube-mesh

case, and the time complexity is the same. Hypercube links are used.
For the communications of the first stage, this mapping is better than the
hypercube mapping (by a factor equal to log2 N). But, for tree-like and parallel
prefix computations on rows, the term (log2 N) in the time complexity would
be replaced with (N/2). Also, for tree-like computations on columns the term
(log2 M) in the time complexity would be replaced with (N/2 + q).

4 Conclusions

The parallel algorithms for Lagrange and Hermite interpolation methods are
developed by starting from formal specifications – which assure the correct-
ness, and using set-distributions – which assure the efficiency. The obtained
algorithms consider bounded parallelism, and they are both cost-efficient par-
allel algorithms.

Generally, if each datum appears more than once in the local postconditions,
by using set-distributions we may get better results than by using simple
distributions. This is the case of polynomial interpolation, and the results em-
phasize the advantages. Using set-distributions does not always mean adding
a new dimension into the organization of the processes – for example, Hermite
interpolation algorithm may consider rows with different number of processes
(not all equal to N) depending on the values of rk, 0 ≤ k ≤ m.

The derivation of the algorithms is not ruled by a particular interconnection
network. The possible mappings on different networks could be evaluated.
The two networks that we have analyzed, hypercube-mesh and multi-mesh
hypercube, preserve the cost-efficiency of the algorithms.

It is known that by the time the size of the problem becomes large enough
to justify the use of parallelism, polynomial interpolation could break down
due to ill-conditioning. Still, as it is argued in [8], some things can be done
to avoid this. The improvement in Lagrange interpolation using Chebyshev
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rather than equidistant points is well known. Computing a good set of points
is a challenging problem, and some work has been already done (e.g. [12,15]).

Appendix A

The program notation is based on Dijkstra’s guarded command language [5].
The programs use the following constructs:

• x := e – assignment;
• S0;S1 – sequential composition;
• if B0 → S0 []B1 → S1 fi – alternative construct;
• do B0 → S0 []B1 → S1 od – repetition.

An extension to Dijkstra’s notation is introduced for the for all statement:
for all i : i ∈ Set : S.i lla rof – arbitrary order.

Parallel composition is denoted by:
par q : 0 ≤ q < p : S.q rap

And communication is expressed by the following statements
(they are included in parameterized process C.q):

• r ! e – the process q sends the value of the expression e to the process r;
• s ? x – the process q receives from the process s a value, which is assigned to x.
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Appendix B

Beside the classic axioms and the inference rules of sequential programming [6], some
new specific rules are introduced for parallel composition and for communication.

For the parallel composition we have the following par-rule:
Par Rule:

(∀i : 0 ≤ i < p : {Q.i} S.i {R.i})

{(∀i : 0 ≤ i < p : Q.i)} par q : 0 ≤ q < p : S.q rap {(∀i : 0 ≤ i < p : R.i)}

For communication, we have:

Input Axiom:
r :: {true} s ? x {M.x}

?! Rule:
r :: {true} s ? x {M.x}

s :: {M.x(x := e)} r ! e {M.x(x := e)}

where M.x is a predicate in terms of local variable x of the process r and its process
number, and e is a local expression of process s.

Appendix C

Fig. .1. Hypercube-mesh HM(2,2) equivalent to hypercube H4.

Fig. .2. Multi-mesh Hypercube (2, 2, 3).
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Appendix D

S.s.t ::

|[ ppr[i : 0 ≤ i < m] : array of real;

a[i : 0 ≤ i < m] : array of real;

for all i : i ∈ O.s.t :

a[i] := x[i];

ppr[i] := 1

lla rof

{(∀i : i ∈ O.s.t : a[i] = x[i])}

k := 0; {P1.q(k := 0)}

do (k 6= m) →

RestoreP1.1.s.t {P1.1.s.t(k := k + M)}

; k := k + M {P1.s.t(k := k + M)}

od

]|

RestoreP1.1.s.t ::

|[

C0.s.t {a[s + k] = x[s + k]}

;S0.s.t

{ppr[s + k] = (
∏

i :

i ∈ O.s.t ∧ i 6= s + k :

a[s + k]− a[i])}

]|

C0.s.t ::

|[

if(t = 0) →

par v : 0 < v < M :

(s, v)!a[k + s]

rap

[](t 6= 0) →

(s, 0)?a[k + s]

fi

]|

S0.s.t ::

|[

ppr[s + k] := 1;

for all j : j ∈ O.s.t :

if (j 6= s + k) →

ppr[s + k] := ppr[s + k] ∗ (a[s + k]− a[j])

fi

lla rof

]|
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