
Formal Refinement of BSP Programs with Early Cost Evaluation

Virginia Niculescu
Faculty of Mathematics and Computer Science

Babeş-Bolyai University
Cluj-Napoca, România

Email: vniculescu@cs.ubbcluj.ro

Abstract—The paper presents a method that allows formal
refinement of BSP programs. A parallel program is considered
as a number of cooperating parameterized processes with sim-
ilar structures. The method uses parameterized pre- and post-
conditions, and takes into account the data-distribution, even
at the beginning of the construction process. The possibility of
counting the number of communications from postconditions,
allow us to make a cost evaluation even at the early stages of
the design, and so it leads us to the right decisions.

Keywords-parallel computation; abstraction; model;
refinement;data-distribution;

I. INTRODUCTION

In parallel computing, the wide range of possible plat-
forms means that testing cannot do more than skim the sur-
face of a program’s behavior. Hence, it is very important, in
this case, that programs be correct by construction [13]. Also
a big difference in a parallel setting is that the application
of a single formal construction can often build the entire
parallel structure of the program.

The parallel programming model BSP – Bulk Synchronous
Parallelism has been proved as being a successful choice
[15], [2]. Because it separates communication from synchro-
nization, it is particularly clean and simple. This separation
allows us to develop a simple and formal software construc-
tion process for it.

For BSP programs, a number of software development
methodologies have been proposed.

D. Skillicorn proposed a refinement calculus for BSP pro-
grams [12], which is an extension of the classic Refinement
Calculus [10]. The calculus introduces some new construc-
tions: distribute, collect, redistribute, with the appropriate
laws. The frames are not partitioned, and the global state is
used together with some location predicates.

In [3] it is presented a top-down design method of BSP
programs, based on a specification formalism LOGS. BSP is
seen here as a parallel programming paradigm based on
variable sharing.

Another idea has been proposed by Hoare, He, and
Lecomber [6], [9]: a simple semantic is given, in which each
processor can act arbitrarily on any variables, with the final
effect of a superstep being defined by a merge operator; it
defines what happens if multiple assignments to the same
variable are made by different processors.

BSP-Why is a tool for verifying BSP programs [7]. It
is intended to be used as an intermediate core-language
for verification tools (mainly condition generators) of BSP
extensions of realistic programming languages such as C,
JAVA, etc. BSP-Why is based on a sequential simulation of
the BSP programs which allows to generate pure sequential
codes for the back-end condition generator Why and thus
benefit of its large range of existing provers. In this manner,
BSP-Why is able to generate proof obligations for BSP
programs.

In the BSP model, the partitioning of the data is a crucial
issue, as opposed to the mapping of the resulting partitions
to particular processors, which is irrelevant [2]. In fact, the
choice of a data distribution is one of the main means of
influencing the performance of the algorithm. This leads
to an emphasis on problem dependent techniques of data
partitioning, instead of on hardware dependent techniques
that take network topologies into account. The algorithm
designer who is liberated from such hardware considerations
may concentrate on exploiting the essential features of the
problem.

On an abstract level, BSP is defined as a distributed
memory model with point-to-point communication between
processors. So, a formal method for BSP program construc-
tion based on distributed-memory paradigm is appropriate.
The development of shared-memory based methodologies
is justified by the intense use of DRMA (Direct Remote
Memory Access) primitives. Even if the BSPLib standard
defines them, not all the implementations of BSP model use
these primitives, so to base the development methodology
on a distributed memory model with point-to-point commu-
nications is a justified idea. These kinds of communications
are directly mapped into BSMP (Bulk Synchronous Message
Passing) operations, and also may be easily transformed
into DRMA operations if these are more efficient on a
particular architecture. The proposed refinement method
is based on a distributed-memory model that uses point-
to-point communications. An important advantage of the
method is that the effective cost model of BSP is used by
the design method in order to make the right decisions.

II. BULK SYNCHRONOUS PARALLELISM

The BSP model was proposed by Valiant [15] as a “bridg-
ing model” that provides a standard interface between par-
allel architectures and algorithms. A BSP computer contains
a set of processor-memory pairs, a communication network
allowing inter-processor delivery of messages, and a global
synchronization unit that executes collective requests for
a synchronization barrier. The computation is divided into
supersteps separated by global synchronization steps, and
packets sent in one superstep are assumed to be delivered at
the beginning of the next superstep.

The properties of architectures are captured by four pa-
rameters. These are: the raw speed of the machine (which
can be ignored by expressing the remaining parameters in
its units), the number of processors – p, the time required
to synchronize all processors – l latency, and the ability of
the network to deliver messages under continuous load – g

gap (which reflects network bandwidth on a per processor
basis).

The BSP model ignores the particular topology of the
underlying machine; this rules out any use of network
locality in algorithm design. Thus, the model only considers
two levels of locality, local (inside the processor) and remote
(outside a processor), with remote access usually being more
expensive than local ones.

The cost of a superstep is given by:

cost = w + hg + l

where w is the maximum local computation in any pro-
cessors during the superstep, h is the maximum number of
global communications into or out of any processor during
the superstep.

The organization of programs as a sequence of supersteps
reduces the complexity of arranging communication and
synchronization. This makes it straightforward to extend
techniques for constructing sequential programs to BSP
programs.

III. FORMAL REFINEMENT OF BSP PROGRAMS

The method considers a parallel program as a number of
cooperating parameterized processes with similar structures.
A parallel program is considered to be formed of many
parameterized processes S.q(0 ≤ q < p), which are running
in parallel. There is no shared memory, and point-to-point
communication is considered. Since in BSP model, a parallel
machine consists of a set of processors, each with its own
private memory, and an interconnection network that can
route packets between processors, we may reason about
BSP programs as a set of parameterized processes that
communicate via message-passing.

A parameterized process is much like a procedure in
sequential programming. The difference is that, instead of
having only one instantiation in a sequential program, we
have many instantiations in a parallel program.

In sequential programming the Hoare-triple [5]

{Q}S{R}

is commonly used to denote a formal specification of a
program S. This notation expresses that if the program
S starts in a state described by the predicate Q, and the
program terminates, then, upon completion, the predicate R

is satisfied (partial correctness).
For specifying a parallel program, both pre- and post-

conditions, Q and R, are split up as conjunctions of p(p > 0)

local pre- and post-conditions, and a process is associated
with each such pair. So, we may specify a parallel program
as follows:

|[{Q}

par q : 0 ≤ q < p :

{Q.q}

S.q

{R.q}

rap

{R}]|

A parameterized specification refers local variables, the
number of processes (p), the index of the local process (q),
and also elements of the distributed objects which represent
the input of the problem. Therefore, the parameters of a
specification are q, p, and a data distribution D. Many choices
are possible for D, each of them having an impact on the
complexity of the parallel program.

Such a specification forms the starting point for a parallel
program derivation, a formal construction of parameterized
processes constituting a parallel program.

Our approach for obtaining a parameterized process S

from a functional specification is similar to the methods used
in sequential programming. We may use the classic rules
for derivation from sequential programming, and new rules
for parallel composition and communication. The classic
method that obtains an invariant from a specification, in a
calculational style, may be used. The programs are derived
by calculating the necessary conditions to maintain the
invariant. Because we have parameterized specifications, we
will derive parameterized invariants.

A. Communication

A parameterized process is refined into a sequence of
ordinary sequential processes and communication processes.
A parallel program is, thus, decomposed into layers of
process instances.

All the communications occur between instances of the
same parameterized communication process. Such a pro-
cess is called communication closed. Therefore, a parallel
program may be considered as being decomposed into
layers, each layer being either a sequential process or a
communication process. In order to respect the BSP program
structure, we consider that each sequential layer is followed
by a communication layer, which is ended by a global

synchronization barrier. So, a BSP superstep is formed of
a computation layer and a communication layer.

Non-blocking point-to-point communications are consid-
ered, and because of this if we have to send more messages
from one process to another, the order in which the messages
arrive is not determined. We may impose a constraint: in a
communication layer only one communication may be done
between two particular processes. This constrain does not
restrict the communications between processes because if
more than one message has to be sent from process s to
process r, then messages may be packed into one message
(they form a list), since anyway BSP model assumes that
the communications are completed only at the end of each
superstep.

B. Program Notation

The Dijkstra notation [1] is used for our program notation,
and it is enlarged with some parallel specific constructs.

Parallel composition is denoted by:
• par q : 0 ≤ q < p : S.q rap.
Communication is expressed by the constructs:
• r ! e

where e is a list of expressions (or only one), and the
statement means that these expressions are output to
process r;

• s ? x

where x is a list of variables (or only one variable),
and the statement means input from process s a list of
values that are assigned to x.

A send command r!e and a receive command s?x form
a matching pair if and only if r!e appears in process s,
s?x appears in process r, and x := e is a syntactically legal
multiple assignment.

The synchronization barrier is expressed by the statement
barrier that has to be introduced at the end of any commu-
nication layer.

C. Proving Rules

Beside the classic axioms and the inference rules of
sequential programming, some new specific rules are intro-
duced.

For barrier we will not introduce any rule or axiom
since that statement is implicitly added at the end of any
communication layer.

The following rules and axioms are adapted from Levin
and Gries [8].

For communication we have two axioms:
Input Axiom: r :: {true} s?x {M.x}
Output Axiom: s :: {P} r!e {P}

The input axiom stipulates that in isolation anything can
be concluded after receiving a value, and the output axiom
stipulates that sending a value does not change the state of
the sending process.

In order to relate these two communication statements a
Rule of Satisfaction, as in [8], is introduced. This rule has
to be proved after each barrier and states that:

- for every receive statement there is a matching send
statement and vice versa;

- for every matching pair of the form

r :: {true} s?x {M.x}

s :: {P} r!e {P}

we have P ⇒ M.x[x\e]

This way deadlock becomes impossible and the deadlock-
free property of BSP is satisfied.

The postcondition of the receiving process r follows the
statement, even if that postcondition is satisfied only after the
synchronization barrier. We allow this, because the received
value is not used anywhere else in the corresponding com-
munication process that is derived. (A process does not have
the role of an intermediary in sending a value; the formal
derivation excludes this and in BSP this is not justified.)

For the parallel composition we have the following par-
rule:

Par Rule:

(∀i : 0 ≤ i < p : {Q.i} S.i {R.i})

{(∀i : 0 ≤ i < p : Q.i)}

par q : 0 ≤ q < p : S.q rap

{(∀i : 0 ≤ i < p : R.i)}

The precondition of the par-statement is the conjunction
of all preconditions of each process S.q. A similar remark
holds for postcondition. The state spaces of the processes
are disjoint since each process has each its own set of local
variables. Execution of one process, therefore, cannot alter
the state of any other process, except when communication
occurs. And, in the communication layers the rule of satis-
faction has to be proved.

We also use the result of Elrad and Francez [4] that says:
“Any distributed program is equivalent to any of its safe
decompositions into layers”. Decomposition into layers is
safe if all the layers are communication closed. This means
that a parallel program

S :: par q : 0 ≤ q < p : S.q rap

is equivalent to
S :: L0, . . . Ld−1

where Lj :: par q : 0 ≤ q < p : Sj .q rap are communication-
closed, and d is the depth of the decomposition.

The rule of satisfaction is applied to each layer after
achieving the decomposition into layers.

Example 1: An Example – Parallel Prefix
This section presents a formal derivation for a BSP pro-

gram for parallel prefix problem. We make a strict separation
of computation and communication layers, and we analyze
the complexity of the obtained program.

The specification of the problem in terms of our notation
is:

|[k, p : int;

x(i : 0 ≤ i < p) : array of int;
{0 ≤ k ∧ p = 2k}

par q : 0 ≤ q < p :

|[m : int;

S.q

{R.q : m = M.0.(q + 1)}

]|

rap

{(∀q : 0 ≤ q < p : mq = M.0.(q + 1))}

]|

where M.a.b = (�i : a ≤ i < b : x(i)), and the operator � is an
associative operator.

We assume that the integer array x is distributed by
assigning the element x(q) to process q (identity distribution).

The global postcondition is:

R : (∀q : 0 ≤ q < p : mq = M.0.(q + 1))

where mq is the variable m from process q.
We split the global postcondition into p local postcondi-

tion, by taking into account the distribution. So, the local
postconditions are:

R.q : m = M.0.(q + 1)

The relation (∧q : 0 ≤ q < p : R.q) ≡ R holds, and this means
that the par-rule may be applied.

The local invariants may be obtained by introducing a
variable t, 0 ≤ t ≤ k:

P.q : P0.q ∧ P1.q

P0.q : 0 ≤ t ≤ k

P1.q : 0 ≤ q < 2t ⇒ m = M.0.(q + 1)

The progress is obtained by increasing the variable t:

P1.q : (t := t + 1)

≡ {definition}
0 ≤ q < 2t+1 ⇒ m = M.0.(q + 1)

≡ {range splitting}
P1.q ∧ (2t ≤ q < 2t+1 ⇒ m = M.0.(q + 1))

m = M.0.(q + 1)

≡ {definition of M, range splitting,

M.a.c = M.a.b � M.b.cif 0 ≤ a < b < c ≤ p}

m = M.0.(q − 2t + 1) � M.(q − 2t + 1).(q + 1)

The value M.0.(q − 2t + 1) is, on account of P1, known
in process(q − 2t), while the value M.(q − 2t + 1).(q + 1) is
unknown. This suggests us to strengthen P with invariant
P2, which ensures that the value of M.(q − 2t + 1).(q + 1) is
recorded in m for all processes q with q ≥ 2t.

P.q : P0.q ∧ P1.q ∧ P2.q

P2.q : 2t ≤ q ⇒ m = M.(q − 2t + 1).(q + 1)

We analyze now the progress for the invariant P2:

P2.q : (t := t + 1)

≡ {definition}
2t+1 ≤ q ⇒ m = M.(q − 2t+1 + 1).(q + 1)

≡ {range splitting}
2t+1 ≤ q ⇒ m = M.(q − 2t+1 + 1).(q − 2t + 1)�

M.(q − 2t + 1).(q + 1)

The term M.(q− 2t +1).(q +1) is known on account of P2,
and the term M.(q − 2t+1 + 1).(q − 2t + 1) is known in process
q − 2t.

So, there are three kinds of processes: each process q with
0 ≤ q < 2t has trivially restored P1 and P2, each process q

with 2t ≤ q < 2t+1 has to restore P1 using the value m of
process q − 2t, and finally each process 2t+1 ≤ q < 2k has
to restore P2 using the value of process (q − 2t). Therefore,
in iteration t, process q should engage in a receiving from
process (q − 2t) and in a sending to process (q + 2t), if these
exist.

The variable m in process q is initialized with the element
of x that it is distributed to process q: x(q), and so the
invariant holds at the beginning.

We use the following notation:

M.q.t =

{

M.0.(q + 1), if q < 2t

M.(q − 2t + 1).(q + 1), otherwise

The parameterized process S.q may be now defined:

S.q ::

|[t, aux : int

t := 0; m := x(q);

{P.q}

do t 6= k →

C0.q;

{2t ≤ q < 2k ⇒ aux = M.(q − 2t).t}

S0.q;

{P.q}

od

]|

Each iteration is formed of a communication process C.q,
and a computation process S.q.

C0.q :: {communication layer}
|[{m = M.q.t}

if q < 2t →

(q + 2t)!m

[] 2t ≤ q < 2k − 2t →

(q + 2t)!m;

(q − 2t)?aux;

{aux = M.(q − 2t).t}

[] 2k − 2t ≤ q < 2k →

(q − 2t)?aux;

{aux = M.(q − 2t).t)}

fi

barrier

]|

The pairs of communication processes have the form (q, q +

2t), 0 ≤ q < 2k − 2t, where q is the sender and q + 2t is
the receiver. The precondition of the sending statement is
m = M.q.t. The received value in process q + 2t is stored
in the local variable aux and the postcondition is aux =

M.((q + 2t) − 2t + 1).t = M.q.t. So, the rule of satisfaction is
proved.

S0.q :: {computation layer}
|[if 2t ≤ q →

m := m � aux;

fi

; t := t + 1

]|

Cost evaluation
There are k = log p supersteps, each of them being formed

of a computational process with wq = 2 and a communication
process with h = 1.
So the total cost is:

2 log p + log p ∗ g + log p ∗ l

IV. DISTRIBUTIONS

Data distributions have a serious impact on time complex-
ity of parallel programs developed based on domain decom-
position, which are very conveniently implemented using
BSP model. Distributions are considered to be parameters
of our programs, and they have to be carefully analyzed
since they may considerably change the complexity of our
programs.

We use n to denote the set {∀i : 0 ≤ i < n : i}.
Definition 1: D = (δ, A, B) is called a simple (one-

dimensional) distribution if A is a finite set that specifies the
set of data objects (an array with n elements that represent
the indices of data objects), B is a finite set that specifies
the set of processes, (which is usually p) and, δ is a mapping
from A to B.

Distributions of multi-dimensional arrays may be modeled
by Cartesian distributions. In what follows, it is assumed that
an m × n matrix is distributed across processes.

Definition 2: A Cartesian distribution is defined by a
Cartesian product of one-dimensional distributions. The
Cartesian product of two one-dimensional distributions D0 =

(δ0, m, M), D1 = (δ1, n, N) is defined by:

D0 × D1 = (δ0 × δ1, m × n, M × N)

where the function δ0×δ1 assigns a pair of process numbers
to each array index pair.
Formally written, we have δ0 × δ1 = (λi, j · (δ0.i, δ1.j)).

The Cartesian product of two one-dimensional distribu-
tions uses a process pair as identification for a process.
Since the processes number p is set, we can consider all
decomposition such that p = M × N .

When the processes number is greater than the data input
size, it is desirable to assign a datum to more than one

process. Also, when a data object is used in more than one
computation, this kind of distributions may lead to efficient
algorithms [11].

Definition 3: A set distribution for n data input objects on
p processes is defined by a set–valued mapping δ : n (p;
δ.i represents the set of processes containing the data object
with the index i.

By using the expression q ∈ δ.i we mean that the date with
the index i was assigned to the process q; if we use simple
distribution this expression will be equivalent to q = δ.i.

V. COST EVALUATION

BSP model gives us a cost model that is both tractable
and accurate, and can be used as a part of the design
process. This formal method for BSP program construction
allows us to formally evaluate the costs based on the local
postconditions.

The distributions determine how the global postcondition
is split up, and the local postconditions determine the num-
ber of communications and the computational work of each
process. Given a program’s postcondition and a distribution,
an evaluation of the cost, before developing the program, is
possible.

We consider that we have p processes and a data distribu-
tion δ : n → p. The program’s postcondition is split up into p

local postconditions according to the distribution δ. For each
local postcondition a process, establishing it, is created and
associated to.

The total number of postconditions that refer to a partic-
ular datum is a measure of the number of communications
of that datum.

For the datum e, the quantity NOcc.e is introduced:

NOcc.e = the number of local postconditions in which e

occurs.

For a BSP program, we are interested in finding the
number h, and this depends on the fan in and fan out

numbers of each process q. The fan out number of process
q may be computed based on NOcc of each datum that is
assigned to process q:

fan outq =

(
∑

i : 0 ≤ i < n ∧ q ∈ δ.i : (NOcc.ei − A.ei) /|δ.i|)

A.e =
(

∑

q : 0 ≤ q < p ∧ q ∈ δ.e : E.q.e
)

where

E.q.e =

1, if e occurs in the postcondition
of the process q;

0, otherwise.

For simple distributions |δ.i| = 1 since δ.i is a simple
value; for set-distribution δ.i represents the set of processes
containing the data object with the index i. The formula
is based on the division with |δ.i| because if ei belongs

to many processes, all of them could participate to the
communication as ’senders’ of this date.

The fan in number of process q can also be evaluated by
counting all the data that are used in the local postcondition
R.q of the process q, which are not assigned to the process
q.

fan inq =
(

∑

i : 0 ≤ i < n ∧ q /∈ δ.i ∧ ei occurs in R.q : 1
)

From these, we have hq = max(fan inq, fan outq) (or we
may consider the sum hq = fan inq + fan outq), and then
h = (max q : 0 ≤ q < p : hq) may be computed.

By summing over all data e, the total number of commu-
nications NCom will be obtained from NOcc.e:

NCom =
(

∑

e :: NOcc.e − A.e
)

If the distribution is well balanced – perfect or ho-
mogenous – and the postconditions defined based on these
distributions use the same amount of data, we may evaluate
h using the formula h = NComm/p.

This technique of counting communications allows a com-
parison of the distributions on the basis of their communica-
tion overhead. The value of h is only determined by the way
the program’s postcondition is split up, and the distribution
used. We have considered that we need only one superstep
for satisfying the postcondition. But, generally, in programs
construction stepwise refinement is used, and we may apply
this technique to partial postconditions. So, this technique
can give us a fair approximation of the communication
overhead. This technique also allows us to choose the most
appropriate distribution before developing the program.

The technique suits very well to BSP programs since the
results that can be obtained are independent of the inter-
communication network.

Example 2: Lagrange Polynomial
We will make cost evaluation for BSP parallel programs

for the computation of Lagrange polynomial on a given
value. Two variants are constructed starting by selecting
different types of distribution: simple and set.
The Problem
Let [a, b] ⊂ R, x(i) ∈ [a, b], 0 ≤ i < m, such that x(i) 6= x(j) for
i 6= j and f : [a, b] → R.

Lagrange interpolation polynomial is defined as:

(L(m−1)f).x =
(

∑

i : 0 ≤ i < m : li.x ∗ f.x(i)
)

where li, 0 ≤ i < m are the fundamental Lagrange interpola-
tion polynomials:

li.x = (x−x(0))...(x−x(i−1))(x−x(i+1))...(x−x(m−1))

(x(i)−x(0))...(x(i)−x(i−1))(x(i)−x(i+1))...(x(i)−x(m−1))

= u.x

(x−x(i))
· 1

(x(i)−x(0))...(x(i)−x(i−1))(x(i)−x(i+1))...(x(i)−x(m−1))

The global postcondition for the computation of the value
L(m−1)f.x is

R : lx = (Lm−1f).x

Variant 1 – Simple Distributions

We consider the one-dimensional distribution δ : m → p,
for the data x(i), f(i), 0 ≤ i < m. The x value is distributed to
all the processes (or x is distributed to process 0, and then
communicated to all other processes, by a broadcast).

Using stepwise refinement, the following stages can be
considered:

1) compute the value u.x;
2) compute the fundamental polynomials li.x;
3) compute the value (Lm−1f).x.
The local postconditions for the three stages are:

R0.q : ux = u.x∧

(∀i : 0 ≤ i < m ∧ δ.i = q : xx(i) = x − x(i))

R1.q : (∀i : 0 ≤ i < m ∧ δ.i = q : l(i) = li.x)

R2.q : lx = (Lm−1f).x

The first and the last stages represent computations of
a product and a sum, so classic algorithms for combine
computations (possibly using tree-like computations), may
be used.

A BSP program for computing a general sum(product) of
n elements may be defined using a single superstep with the
cost:

l + n − 1 + g(n − 1)

or using (log n) supersteps based on a tree-like computation
with a cost:

log n(l + 1 + 2g)

We will focus next on the second postcondition. The post-
condition for the second stage may be rewritten in the
following way:

R1.q : (∀i : 0 ≤ i < m ∧ δ.i = q : l(i) =
ux

xx(i)
∗ prod.i.m)

where prod.i.k = (
∏

j : 0 ≤ j < k ∧ j 6= i : x(i) − x(j)).
Cost evaluation

fan outq = (
∑

i : 0 ≤ i < n ∧ q ∈ δ.i : NOcc.x(i) − 1)

=
m

p
(p − 1)

fan inq = m −
m

p
=

m

p
(p − 1)

So, we may evaluate the cost as

S = l +
m

p
(m − 1) + mg

Variant 2 – Set Distribution
Let p = M × M and all the processes are identified by a

pair (s, t), 0 ≤ s, t < M .
If we have a simple distribution δ : m → M , and M

permutations πt : M → M, 0 ≤ t < M , (for example
πt.i = (i + t)%M), then we may define a set-distribution by:

x(i) ∈ O.s.t ⇔ δ.i = πt.s

where O.s.t is the set of data elements that are assigned to
the process (s, t).

For m = 9 and M = 3 the data distribution is shown in the
Figure 1.

There are again three stages defined by the following local
postconditions:

R0.s.t : (ux = u.x ∧ (∀i : i ∈ O.s.t : xx(i) = x − x(i)))

R1.s.t : t 6= 0 ∨ (∀i : i ∈ O.s.t : l(i) = li.x)

R2.s.t : (lx = (Lm−1f).x)

s\t 0 1 2
0 x0, x3, x6 x1, x4, x7 x2, x5, x8

1 x1, x4, x7 x2, x5, x8 x0, x3, x6

2 x2, x5, x8 x0, x3, x6 x1, x4, x7

Figure 1. The data distribution for m = 9, M = 3.

Each row (s, .) computes the values l(i), ∀i : 0 ≤ i < m∧δ.i =

s.
We will focus again on the second stage, and we will split

it into two steps: one for partial computations, and one for
combining the partial computations.

The postcondition R1.s.t may be rewritten as:

R1.s.t : t 6= 0 ∨ (∀i : i ∈ O.s.t :

l(i) = ux/xx(i) ∗ 1/prod.i.m)

where prod.i.m = (
∏

j : 0 ≤ j < m ∧ i 6= j : (x(i) − x(j))).
To compute the products prod.i.m we split them in M

products. Each of these subproducts corresponds to the set
of elements assigned to a process.

So, we rewrite the products prod.i.m as:

prod.i.m

= {range spliting ; s = δ.i}

(
∏

t : 0 ≤ t < M : (
∏

j : j ∈ O.s.t ∧ i 6=j : (x(i) − x(j))))

= {parprod.i.t
not
= (

∏

j : j ∈ O.s.t ∧ i 6= j : (x(i) − x(j)))}

(
∏

t : 0 ≤ t < M : parprod.i.t)

Cost evaluation
For the fist step we have:

fan out(s,t) = (
∑

i : i ∈ O.s.t : (NOcc.xi − A.xi)/M)

=
m

M
(2M − 1 − M)/M ≈

m

M
fan in(s,t) =

m

M

The costs of the first and the second supersteps are:

C1 = l +
m

M

(m

M
−1

)

+
m

M
g

C2 = l +
m

M
(M−1) +

m

M
(M−1)g

and, the total cost is:

2l +
m

M

(m

M
+M−2

)

+ mg

Remarks:
• Different types of distributions lead to different algo-

rithms.
• The second algorithm can be used in both cases: p ≤ m,

or p > m, p = M × M . If p > m the advantage of using
the second algorithm is obvious.

• If l the cost for synchronization is big then the first
variant is better.

• If we consider hq = fan inq + fan outq, then the cost
of the first variant increases considerably

S = l +
m

p
(m − 1) + 2mg

and very probably mg > l, and so the second variant
becomes better.

VI. CONCLUSIONS

BSP has shown that structured parallel programming is
not only a performance win, but it is also a program
construction win, especially if we add a formal method for
designing.

The method presented in this paper uses parameterized
processes and parameterized assertions on local variables. In
this way the process construction becomes very simple. Pa-
rameterized invariants are constructed from postconditions,
for program derivation.

BSP model proved to be very appropriate for problems
with regular structure, and so, for problems based on do-
main decomposition. An important advantage of this formal
method of BSP programs construction is that we can take
into account the data-distribution, even at the beginning of
the construction process. The possibility of evaluating costs
from postconditions, allows us to make a cost evaluation
even at the early stages of the design, at this leads us to the
right decisions.

Acknoledgement: This work was supported by CNCSIS -
UEFISCDI, project number PNII - IDEI 2286/2008

REFERENCES

[1] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, 1976.

[2] Rob H. Bisseling. Parallel Scientific Computation -A Struc-
tured Approach using BSP and MPI Oxford University Press,
326 pg., 2004.

[3] Yifeng Chen, Jeff W. Sanders: Top-Down Design of Bulk-
Synchronous Parallel Programs. Parallel Processing Letters
13(3): 389-400, 2003.

[4] T. Elrad, N. Francez. Decomposition of distributed programs
into communication-closed layers. Science of Computer Pro-
gramming, (2):155-173, 1982.

[5] C.A.R. Hoare. An Axiomatic Basis for Computer Program-
ming. Communications of the ACM, 12(10):576-580, 1969.

[6] C.A.R. Hoare, J. He. Unified Theories of Programming.
Prentice-Hall International, 1998.

[7] J. Fortin, F. Gava. BSP-WHY: an intermediate language for
deductive verification of BSP programs, in Proceedings of the
4th international workshop on High-level parallel programming
and applications, HLPP ’10, ACM, Baltimore, Maryland,
USA, pp. 35–44, 2010.

[8] G. M. Levin, D. Gries. A Proof Technique for Communicating
Sequential Processes. Acta Informatica (15):281-302, 1981.

[9] D. Lecomber. Methods of BSP Programming. PhD Thesis,
Oxford University Press, 1998.

[10] C. Morgan. Programming from Specifications. Prentice Hall,
1990.

[11] V. Niculescu. On Data Distribution in the Construction of
Parallel Programs. The Journal of Supercomputing, Kluwer
Academic Publishers, 29(1): 5-25, July 2004.

[12] D.B. Skillicorn. Building BSP Programs Using the Refine-
ment Calculus. In Formal Methods for Parallel Programming
and Applications, IPPS/SPDP’98, volume 1388 of LNCS, pp.
790-795, 1998.

[13] D.B. Skillicorn, D. Talia. Models and Languages for Parallel
Computation. ACM Computer surveys, 30(2): 123-136, June
1998.

[14] A. Tiskin. The Design and Analysis of Bulk-Synchronous
Parallel Programs. PhD. Thesis, University of Oxford, 1998.

[15] L.G. Valiant. A Bridging Model for Parallel Computation.
Communication of the ACM, 33(8): 103-111, August 1990.

