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Abstract—We introduce in this paper a bandwidth aggregation
routing solution for multihoming sites. Our routing solution
interconnects two distinct multihomed network sites (i.e. network
sites that have two or more uplinks to the Internet) and routes
local flows between these two network sites. It routes local
flows dynamically through several outgoing network paths/links
depending on the load (i.e. congestion level) on each path. If
a network path/uplink becomes more congested, fewer local
flows are routed through it. We detail two path load esti-
mation strategies: one based on RTT measurements and the
other based on throughput measurements, both implying passive
network measurements. Our multihoming solution outperforms
the ECMP-based (i.e. Equal-Cost Multipath) solution in terms
of total aggregated throughput and inter-flow fairness.

Index Terms—Multihoming, Multipath load-balancing, Multi-
path routing, ECMP routing

I. INTRODUCTION AND PROBLEM FORMULATION

We consider in this paper a network setup like the one in
Fig. 1 with two multihomed sites, Site A and Site B (i.e.
both network sites have 2 uplink connections to the Internet
through different ISPs). We assume there are two physical
network paths between Site A and Site B: Path1 going through
ISP1 and ISP3 and Path2 going through ISP2 and ISP4. We
assume the paths are independent or quasi-independent (i.e.
the paths may share common network segments, but have
different bottleneck links). The goal of this paper is to find
a routing policy for packets sent from Site A to Site B over
the multipath network (i.e. to route packets either over Path1
or Path2) such that: a) the total, aggregated throughput from
site A to site B is maximized; b) maintains high inter-flow
fairness for flows going from Site A to Site B; c) this routing
policy works with existing Internet technology (i.e. it does
not rely on specialized feedback/actions from core routers) d)
routing local flows over Path1 or Path2 is transparent to Site
A and Site B local computers.

Because of the last condition, our solution comes in the
form of a virtual tunnel interface between Site A and Site
B (depicted in Fig. 1). This tunnel is just a virtual network
path over the two physical networks paths, Path1 and Path2
(between Site A and Site B). The virtual tunnel interface makes
this routing decision transparent to local computers from site
A, and respectively site B. This routing policy is actually a flow
mapping policy meaning that rather than individual packets,
whole TCP flows are mapped on either Path1 or Path2. This

Fig. 1: The typical network setup of the multihoming problem

is because, by sending packets from the same TCP flow
through different network paths with different capacity/delay
properties, it is highly likely that packets get reordered inside
the network and they cause the transmission rate of the TCP
flow to be halved, thus reducing the throughput [4].

The aforementioned goals should be achieved in a context
of changing network conditions for Path1 and Path2. In other
words, if Path1 has a higher load than Path 2 (i.e. is more
congested), the tunnel interface should map more local flows
on Path 2 than on Path 1. As practical examples, you can
imagine Site A and Site B to be two different buildings
of the same company located far apart. Users from Site A
sending data to Site B want maximum throughput and inter-
flow fairness. We will give in the following sections a flow
mapping policy that adapts dynamically the number of flows
on each physical network path to reflect the load on that path.
The load on a path is estimated based on passive RTT (i.e.
Round-Trip Time) or throughput measurements.

II. RELATED WORK

Our work largely falls in the field of multipath data trans-
fer. This includes traffic engineering (TE), more specifically
multipath load-balancing, where the packets from a set of
flows need to be forwarded to the destination through a set
of multiple network paths. But it also includes Concurrent
Multipath Transfer (CMT) where the packets of a single flow
need to be transported to the destination over multiple network
paths concurrently. We can classify related work according to
the level of the OSI network model the solution functions
at. Also multipath load-balancing techniques can split data
on multiple paths at flow, packet or subflow (i.e. part of
flow, flowlet) level. At level 2, the Data Link level, there
are several solutions that split incoming traffic on multiple
paths, most of them being designed for data transfer inside
data centers having a Clos or fat-tree topology [1]–[3]. They
are implemented either in the hardware of the switch or in



virtual switches of the hypervisor split flow cells on switch
links depending on the utilization of the link These solutions
are designed to work inside data centers having a Clos or fat-
tree topology, so they would not work outside the data center
network. There are many solutions that perform multipath
load-balancing at level 3 of the OSI model, some of them do
traffic engineering inside an AS domain network (i.e. inside
an ISP network) [5]–[7] and others perform traffic engineering
across AS domains for BGP routing [8], [9]. Classical load
balancing across multiple paths is performed with Equal-Cost
Multipath routing (ECMP) [4], a feature supported by the main
used intra-domain routing protocols, OSPF and IS-IS. If there
are available several network paths with the same cost, this
feature maps each packet on a network path based on a hash
function applied to the packet header fields (i.e. IP addresses),
thus all the packets belonging to the same flow follow the same
network path. This is oblivious traffic engineering because it
does not take into account past traffic patterns. Predicted-based
TE uses traffic matrices that represent the traffic demand in
the ISP network across a large time interval (e.g. months)
and uses this estimation to spread flows on multiple network
paths [5]. Because the traffic matrices are evaluated over long
periods of time, these techniques do not cope with fast changes
in traffic, e.g. due to diurnal variations. TeXCP [6] performs
online traffic engineering in an ISP network, as it measures
the path utilization at each router by actively probing these
routers and based on this feedback, it adapts the load on
each path.As opposed to TeXCP, our technique does not rely
on explicit feedback from routers in the ISP network and
works across ISP networks. All the above solutions try to
minimize the maximum link utilization in the ISP network,
while our mechanism strives to improve throughput and delay
metrics, but also inter-flow fairness, only for the flows sourced
at the multihoming site (across ISP networks). SmartTunnels
[9] and Galton [8] are complex tunneling architectures that
employ buffers at the sender and receiver for scheduling and
reordering packets, perform multipath load balancing, FEC
coding. Contrary to these tunnels, our technique is passive and
does not use scheduling/reordering buffers, thus eliminating
the transport delay incurred by these buffers. Concurrent
Multipath Transfer was also approached at transport-level,
either by new transport-level protocols like Multipath TCP
[10] or SCTP [11], [13] or by changes to classical TCP [12],
[14]. All these protocols send a flow on several network paths
concurrently achieving a higher throughput at flow level. But
exactly for this reason they are not fair to TCP (i.e. a MPTCP
flow contains a subflow for each network path and a subflow is
equivalent to a single TCP connection). Various mechanisms
of splitting a data transfer across multiple paths were also tried
at the application-level [15]–[17] and in the context of SDN
(Software Defined Networking) [18]–[20].

III. THE BANDWIDTH AGGREGATION MECHANISM FOR
MULTIHOMING LINKS

The goal of our bandwidth aggregation mechanism is to
distribute a set of flows over a number of multihoming

links/paths depending on the links’ properties (i.e. bandwidth
and delay) and on their current network load (i.e. congestion
level). If at some point, the load increases on a particular
network path, a subset of local multihoming flows assigned
to this path should move on the other multihoming paths. In
the following sections we will deal with the general problem
where we have m network paths (not just 2) connecting Site
A and Site B, labeled Path1, Path2, ... Pathm. Our solution
requires two components:

• the network load estimation policy (estimates the network
load on each uplink)

• the mapping function of local flows on outgoing links.
The second component (i.e. flow mapping function) is

executed whenever the network load estimation policy decides
that the conditions have changed in the network. The network
load is estimated by the estimation policy and converted
to weights (i.e. positive numbers normalized to the interval
[0, 1]) which are assigned to each network path. A weight
dictates how many local multihoming flows are mapped/sent
on that path. The sum of all the weights equals 1. This
algorithm just moves flows from one path to another depending
on the old weight and the new weight on each path. If
old weight > new weight for a path, then (old weight −
new weight) · N flows are removed from this path (where
N is the total number of multihoming flows). Otherwise,
(new weight−old weight) ·N flows are added to this paths
from other paths. The actual algorithm is presented in the
longer version of this paper [22] and omitted here due to space
constraints. The following 2 sections outline two network load
estimation policies.

A. The RTT-based policy for estimating the network load

The intuition behind the RTT-based network load estimation
policy is that as the network gets significantly more congested,
the average RTT measured by flows should experience a
constant and consistent increase. Figure 2 shows the three
typical types of RTT fluctuations encountered by a set of TCP
flows passing through the same network path:

• tiny-scale fluctuations - caused by other flows sharing a
segment of the same network path that disrupt the RTT
measurements of the monitored flows

• small-scale fluctuations - caused by the typical operation
of TCP flows (i.e.TCP flows probe for more available
bandwidth, when they overshoot the network capacity, the
queue overflows causing TCP flows to drop throughput;
this causes periodic cycles in the measured RTT; this type
of RTT fluctuations are used by TCP Vegas and GCC for
WebRTC [21] to adjust the congestion window)

• large-scale fluctuations - determined by a significant
network load change; caused by a significant set of flows
entering or leaving the network.

We want our RTT-based network load metric to be sensitive
only to the last type of fluctuations and ignore the first two
types. In order to do this, we pass the RTT samples array
through a two-stages smoothing process: 1) first a mixed



equal+exponential weighted average on windows of 16 RTT
samples in order to remove tiny-scale fluctuations and reduce
the amplitude of the fluctuations and then, 2) we divide the
RTT array into cycles and compute the average of RTT values
in a cycle to remove small-scale fluctuations.

For the first smoothing stage we take groups of 16 consec-
utive RTT samples and apply a weighted average on them.
The most recent 8 RTT samples have the weight 1 and then,
the weights start decreasing exponentially giving less weight
on older samples. The values of the weights are: 1, 1, 1, 1,
1, 1, 1, 1, 0.88, 0.77, 0.66, 0.55, 0.44, 0.33, 0.22, 0.11. This
way, the RTT values are smoothed, but the most recent RTT
samples have a larger contribution in this average.

After the first smoothing function is applied, ideally, the
RTT array only contains small-scale fluctuations and pos-
sibly large-scale fluctuations. Because we do not want to
perform flow remapping too often (since moving a flow
from one link to another usually implies packet reorderings
and thus, TCP throughput drops), we filter out small-scale
fluctuations by considering an average value for a RTT
cycle. In order to define what a RTT cycle is, we need to
first introduce additional concepts. We call a subsequence
(RTTi, RTTi+1) made of 2 RTT samples, quasi-constant if
RTTi+1 ∈ [RTTi − thresh,RTTi + thresh] where thresh
is a positive threshold. Similarly, this subsequence is called
ascending if RTTi+1 > RTTi + thresh and is called de-
scending if RTTi+1 < RTTi−thresh. After applying the first
smoothing function, the RTT sequence will contain segments
(i.e. subsequences) of the following types:
1) ascending segment - is the largest continuous sequence of
RTT samples containing only ascending and quasi-constant
subsequences and the longest quasi-constant subsequence from
this segment has a length not larger than stable run thresh
2) descending segment - is the largest continuous sequence of
RTT samples containing only descending and quasi-constant
subsequences and the longest quasi-constant subsequence from
this segment has a length not larger than stable run thresh
3) stable-run segment - is a continuous sequence of RTT
samples with the property that any two samples are quasi-
constant and the length of the segment is larger than
stable run thresh > 0.

We define two types of RTT cycles and these can be seen
in Fig. 2. First, an RTT cycle is a continuous sequence of
RTT samples that consists of an ascending segment and a
descending segment (not necessarily in this order). Secondly,
an RTT cycle can also be a continuous sequence of RTT
samples that end with a stable-run segment. This second type
of cycle can contain an ascending segment or a descending
segment preceding the stable-run or it can contain just the
stable-run segment as you can see in Fig. 2 (i.e. the time
interval marked with ‘heavy load‘). If we consider only the
first type of RTT cycles, when the network becomes heavy
loaded as seen in Fig. 2, the RTT cycle would end only after
the heavy load period had passed and thus, a flow remapping
will occur too late - since flow remappings happen only at the
end of a RTT cycle.

Time

cycle
(small scale fluctuation)

cycle
(small scale fluctuation)

heavy load tiny scale fluctuation

Fig. 2: Typical RTT fluctuations of flows (idealized drawing)
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Fig. 3: The two-stages smoothing performed on RTT samples

We further smooth out the RTT samples string by averaging
values over an RTT cycle (using the algorithm in listing 2),
so that the number of flow remappings will be reduced. The
effect of the first and the second smoothing function applied
on measured RTT samples obtained through simulations is
visible in Fig. 3. The line labeled ’RTT samples’ presents
raw RTT measurements taken from a set of flows passing
through a network path that has a low load between seconds
20-50 and 160-300 and becomes severely congested between
seconds 50-160 (when a significant number of new flows enter
the network). The green line shows the result of applying the
first smoothing function. We can see that this line is smoother
than the raw RTT samples line. Finally, the red line shows the
average points of each RTT cycle connected by a line. This
line remains relatively constant in each of the two periods,
low congestion (sec. 20-50, 160-300) and, respectively, high
congestion (sec. 50-160), while the value of this average
remains consistently higher during high congestion compared
to that of the low congestion period.

The UpdateRTTState algorithm depicted in listing 1 is the
RTT-based network load estimation policy. It is executed
whenever a new return packet (i.e. TCP ACK packet) arrives at
the multihoming sender router. The algorithm updates the RTT
state of the respective network path and when the state changes
significantly, it computes new weights for each network path
and calls the FlowRemapping algorithm to perform flow
remapping. Line 1 computes the RTT sample from the packet
by subtracting the TS Echo Reply field of the Timestamps
Option in the TCP header from the current time (i.e. now).
Then it computes srtt (i.e. exponentially smoothed RTT) and
updates the minimum and maximum RTT in lines 2-3. When
computing the RTT cycles and path weights (i.e. lines 5-18)
we use only one RTT measurement per srtt in order to reduce
computations. The 16 window equal+exponential average (i.e.
first smoothing function) is performed in line 5 by function



UpdateRTTWindow. Then, if UpdateRTTCycle (described in
Listing 2) detects the start of a new cycle, we compute the
new weights for each network path in lines 9-16 and then call
the FlowRemapping algorithm to perform flow remapping. The
weight for a path specifies how many flows should be mapped
on this path and is used in the algorithm FlowRemapping.
The weight of a path is computed as an inverse linear map-
ping of cycle.average rtt from the interval [min cycle avgrtt,
max rtt] to the interval [0, 1], where cycle.average rtt is the
average RTT for the current cycle, min cycle avgrtt is the
minimum cycle.average rtt recorded out of all RTT cycles and
max rtt is the maximum RTT ever recorded (for that specific
network path).

The UpdateRTTCycle algorithm depicted in listing 2 is
responsible for managing RTT cycles. This algorithm gets
called from the UpdateRTTState algorithm approximately once
per srttk for each network path Pathk, when a new acknowl-
edgment packet arrives at the multihoming sender router on
path Pathk. The state maintained for a RTT cycle is the
following (one cycle state is maintained for each network
path):

cycle.duration: length in time of the previous, completed cycle
cycle.average rtt: average value of the previous, completed cycle
cycle.start time: starting time of the current cycle
cycle.current rtt: current sample value from the current cycle (i.e.
average over 16 RTT samples)
cycle.ascending: state of the ascending phase in the current cycle:
notstarted/started/ended
cycle.descending: state of the descending phase in the current cycle:
notstarted/started/ended
cycle.stableRun starttime: starting time of the last quasi-constant
subsequence in the current cycle
cycle.stableRun startvalue: starting value of the last quasi-constant
subsequence in the current cycle
cycle.cumulative rtt: sum of all samples from the current cycle
cycle.n: number of samples in the current cycle

Please note that while a cycle is made of a sequence
of samples, each sample value from a cycle is actually an
average over an 16 RTT samples window. The isAscend-
ing condition tests whether the next RTT window average,
avg rtt window and the current sample value of the cycle,
cycle.current rtt, form an ascending subsequence. CTHRESH
is the changing threshold from the definition and we used a
value of 5% in the evaluation tests. Similarly, the isDescending
condition is true when avg rtt window and cycle.current rtt
form a descending subsequence. If the avg rtt window and
cycle.current rtt are quasi-constant, we check in lines 3-
7 whether we have a stable-run segment and if this is
true, we close the current cycle and initialize a new cy-
cle. In our evaluation tests, we considered that a quasi-
constant sequence is a stable-run segment if its length in
time is larger than MIN REMAPPING TIME INTERVAL (i.e.
stable run thresh from the definition) and it lasts more than
half the length of the previous cycle. If isAscending is true
we do the following things in lines 13-19: we check if this

Algorithm 1 The RTT-based network load estimation policy
Input:
p : an ACK packet received on path Pathk

min rttk,max rttk, srttk : minimum RTT, maximum RTT and
smoothed RTT for Pathk

last rtt updatek : last time the RTT state was updated for Pathk

The UpdateRTTState algorithm is:
1: curr rtt = now − p.TSecr
2: srttk = 0.8 · srttk + 0.2 · curr rtt
3: UpdateMinMaxRTT(min rttk, max rttk, curr rtt )
4: if last rtt updatek < (now − srttk) then
5: avg rtt window = UpdateRTTWindow(Pathk,curr rtt)
6: last rtt updatek = now
7: if (UpdateRTTCycle(Pathk, avg rtt window) = 1) then
8: { compute the weight for each Path }
9: sum = 0

10: for i = 1 to m do
11: weighti = cycle.average rtti−min cycle avgrtti

max rtti−min cycle avgrtti
12: sum = sum+ weighti
13: end for
14: for i = 1 to m do
15: weighti = 1− weighti / sum
16: end for
17: FlowRemapping()
18: end if
19: end if

cycle already contains an ascending segment (cycle.ascending
= ended) which means we should close this cycle and initialize
a new one; we check if we were previously on a descending
segment (cycle.descending = started) and we end this segment;
we set cycle.ascending = started to signalize we are on an
ascending segment. Similar things happen in lines 21-27 if
isDescending is true. In the end of the algorithm, if we do
not have a new cycle, we add the window average RTT to
the cumulative rtt of this cycle and increase the number of
samples in lines 30-31. The initialization of a new cycle is
performed in lines 33-42.

B. The throughput-based policy for estimating the network
load

The throughput-based policy is very similar to the RTT-
based policy. It estimates the current load of a network
path by computing the total throughput of all multihoming
flows going through that path. If the total throughput of
multihoming flows traversing a network path increases con-
sistently, it means that more bandwidth was available on
that network path, so the load on that path has reduced.
Similar algorithms like UpdateRTTState and UpdateRTTCy-
cle are used, the most significant difference being the way
path weights are computed. The weight for Pathk is com-
puted as: weightk = cycle.average throughputk

nk
/sum where

cycle.average throughputk is the average throughput of the
current cycle for Pathk, nk is the number of local multihom-
ing flows currently assigned to Pathk and sum is the sum of
all weights (for normalization to [0,1] purposes). The actual
algorithms are detailed in the longer version of this paper [22].



Algorithm 2 Updates the RTT cycle state for Pathk

Input:
avg rtt window : average of 16 RTT samples for Pathk

cycle : the data structure for the current RTT cycle of Pathk

Returns: True if a new cycle starts or False otherwise

The UpdateRTTCycle algorithm is:
1: isAscending = avg rtt window > cycle.current rtt · (1 +

CTHRESH);
2: isDescending = avg rtt window < cycle.current rtt · (1 −

CTHRESH);
3: if (!isAscending and !isDescending) then
4: { We are in a stable-run phase }
5: if (now − cycle.stableRun starttime >

cycle.duration/2)
and (now − cycle.stableRun starttime >
MIN REMAPPING TIME INTERV AL) then

6: return newcycle init()
7: end if
8: else {This is not a stable-run phase}
9: cycle.current rtt = avg rtt window

10: cycle.stableRun starttime = now
11: cycle.stableRun startvalue = avg rtt window
12: if isAscending=TRUE then {in ascending phase}
13: if cycle.ascending = ended then
14: return newcycle init()
15: end if
16: if cycle.descending = started then
17: cycle.descending = ended
18: end if
19: cycle.ascending = started
20: else if isDescending=TRUE then {descending phase}
21: if cycle.descending = ended then
22: return newcycle init()
23: end if
24: if cycle.ascending = started then
25: cycle.ascending = ended
26: end if
27: cycle.descending = started
28: end if
29: end if
30: cycle.cumulative rtt+ = avg rtt window
31: cycle.n++
32: return false { The same cycle }

The newcycle init() function is:
33: cycle.duration = now − cycle.start time
34: cycle.average rtt = cycle.cumulative rtt/cycle.n
35: cycle.start time = now
36: cycle.current rtt = avg rtt window
37: cycle.ascending = notstarted
38: cycle.descending = notstarted
39: cycle.stableRun starttime = now
40: cycle.stableRun startvalue = avg rtt window
41: cycle.cumulative rtt = avg rtt window
42: cycle.n = 1
43: return true { New cycle }

IV. EVALUATION

This section presents a subset of the experiments we have
performed in order to validate our bandwidth aggregation
mechanism. We can not present here all the experiments due to
space constraints, but we point the reader to the longer version
of this paper [22] for details. We implemented our bandwidth

aggregation mechanism in the ns-3 network simulator.
The network setup of our experiments is shown in Fig.

4. The multihoming sender network is behind router R1

(i.e. the source nodes: s1 .. sn). The multihoming receiver
network is behind router R4 (i.e. destination nodes: d1 ..
dn). There are n = 64 local multihoming TCP flows going
from source to destination nodes. Router R1 is a multihoming
sender router that splits incoming multihoming flows on the
two outgoing paths: Path1: R1 − R2 − R7 − R4 and Path2:
R1 − R3 − R10 − R4. Router R4 is a multihoming receiver
router that maps reverse TCP packets (i.e. ACK packets) on
the same link/path the original data packets came through.
Routers R2, R7, R3 and R10 are ECMP routers that split
randomly and equally incoming flows on outgoing links (i.e.
R2 splits flows going to R7 equally on links R2 − R5 and
R2 − R6; similarly R7 splits flows going to R2 equally on
links R7 − R5 and R7 − R6). The capacity of the access
links of source and destination nodes is always 1 Gbps and
the transmission delay is randomly distributed between 1 ms
and 10 ms. The transmission delay of the outer routers links
R1−R2, R1−R3, R7−R4 and R10−R4 is always set to 10
ms, the transmission delay of the core links R3−R8, R3−R9,
R8−R10 and R9−R10 is always 40ms, while the transmission
delay of links depicted with red in Fig. 4 is also 40ms, if not
specified otherwise. During an experiment, the capacities of all
the links from the same network path (i.e. Path1 or Path2) are
always equal, although Path1 capacity value may be different
than Path2 capacity value. The router queue is DropTail and
is always set to the bandwidth-delay product for that link,
for all routers. The 64 local multihoming flows start in the
beginning of the simulation at random times and last until the
simulation completes (i.e. 600 seconds). Additional 512 TCP
flows attached to source nodes connected to the R2 router and
destination nodes connected to the R7 router (these nodes are
not depicted in Fig. 4) add network load on Path1. 64 of
these flows start in the beginning of the simulation and last
until the end of the simulation creating a steady-state load on
Path1. The remaining 448 flows start at random times between
seconds 40-50 of the simulation and they finish at random
times between seconds 320 and 400 of the simulation, creating
an increased load on Path1. Similarly, 128 TCP flows attached
to source nodes connected to the R3 router and destination
nodes connected to the R10 router (not depicted in Fig. 4)
create a steady-state load on the other network path, Path2,
for the duration of the entire simulation. In addition, there are
32 TCP flows on the reverse path R7−R2 and other 32 TCP
flows on the reverse link R10 − R3 for an increased network
dynamics. In our simulations we used a mixture of TCP Linux
Cubic, Sack and NewReno flows.

We compared our bandwidth aggregation mechanism that
maps multihoming flows dynamically on the two outgoing
paths with an ECMP (Equal-Cost Multipath routing [4])
classical routing scheme. We used the following metrics:

• AVGT(Average throughput per flow) = the average flow
throughput of the 64 multihoming flows
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Fig. 4: The network setup used in the experiments
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• STD(Standard deviation of the flow throughput values) =
the standard deviation of the 64 throughput values

The throughput mentioned above is computed for each multi-
homing flow during the increase load period of the simulation
(i.e. between seconds 40 and 400 of the simulation).

In the first test we have a network capacity of 100 Mbps
and the same transmission delay for both network paths,
Path1 and Path2. We ran 2 simulations: a simulation with
our bandwidth aggregation mechanism employed for router R1

using the RTT-based load estimation policy and a simulation
with our mechanism used at router R1 with the Throughput-
based policy. In Fig. 5 we can see the evolution of the average
RTT per cycle measured for each network path when the
RTT-based mapping policy was used at router R1. We notice
that while cycle average rtt remains relatively constant on
Path2, it increases on Path1 between seconds 50-400 as the
additional 448 TCP flows create an increased load on links
R2−R7 . This determines router R1 to map more multihoming
flows on Path2 than on Path1 between seconds 70-380; this
is visible in Fig. 6a. The flow mapping for the Throughput-
based mapping policy is depicted in Fig. 6b.

Next, we considered three diverse network capacities of
100 Mbps, 500Mbps and 1Gbps and the same transmission
delay for both network paths, Path1 and Path2. For each
network capacity we ran 3 experiments: one with ECMP
routing, second with the RTT-based mapping policy and third
with the Throughput-based mapping policy at router R1. Each
experiment consisted of a simulation being run 10 times with
different, randomly generated, flow starting and ending times
and access links delays. In the end, we computed for each
experiment an average of the aforementioned metrics across
all 10 simulations performed for the same experiment. The
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Fig. 6: Number of multihoming flows mapped on each path;
100Mbps capacity

Network capacity
100Mbps 500Mbps 1Gbps

ECMP mapping STD: 75349.3
AVGT: 112892

STD: 623291
AVGT: 757574

STD: 1083420
AVGT: 1452690

RTT-based
mapping (%)

STD: 41.48
AVGT: 31.47

STD: 31.97
AVGT: 22.07

STD: 35.67
AVGT: 29.30

Throughput-based
mapping (%)

STD: 43.00
AVGT: 32.53

STD: 57.15
AVGT: 25.14

STD: 45.81
AVGT: 30.20

TABLE I: Results for identical bandwidth and delay for both
network paths

obtained results are depicted in Table I. For the ECMP
mapping we show the absolute values for the two metrics,
but for the bandwidth aggregation mechanism employed (i.e.
RTT-based and Throughput-based mapping) we show per-
centage improvement values for the metrics with respect to
the corresponding metric used in ECMP mapping. We can
see, as expected, that our bandwidth aggregation mechanism
improved both metrics with respect to ECMP routing, in all
tested network capacities. The improvements are above 20%
for AV GT and above 30% for STD.

In the next phase, we tried to see whether an asymmetric
RTT on the two network paths would influence our results.
We performed the same experiment as before, but this time,
in all simulations, the transmission delay of links depicted
with red in Fig. 4 was 60ms, while the transmission delay
of all other links remained unchanged. This led to a RTT on
Path1 that was more than 1.5 times the RTT on the network
Path2. The obtained results are depicted in Table II. We have
the same improvements for both metrics when the bandwidth
aggregation mechanism was employed at router R1 (with both
RTT-based and Throughput-based mapping policies), similar
to what we have seen in the symmetrical RTT-bandwidth ex-
periments (i.e. Table I). Although, the AV GT improvements
of the bandwidth aggregation mechanisms are now smaller
than the improvements obtained for the symmetrical RTT-
bandwidth experiments.

Then we tried to see whether our mechanism works on a
setup with asymmetric network capacity paths. We performed
the same experiment as before, but this time, in all simulations,
the network capacity on all links from Path1 were double the
network capacity of links from Path2. The obtained results are
depicted in Table III. Please note that for these asymmetrical
network capacity experiments, we had to slightly modify
the RTT-based mapping algorithm (i.e. the UpdateRTTState



Network capacity
100Mbps 500Mbps 1Gbps

ECMP mapping STD: 74639.7
AVGT: 111059

STD: 837451
AVGT: 889329

STD: 1561710
AVGT: 1717350

RTT-based
mapping (%)

STD: 43.39
AVGT: 32.72

STD: 50.42
AVGT: 8.75

STD: 51.16
AVGT: 13.56

Throughput-based
mapping (%)

STD: 55.18
AVGT: 29.88

STD: 65.24
AVGT: 8.29

STD: 61.45
AVGT: 13.91

TABLE II: Results for identical bandwidth for both paths, but
asymmetric delays (links R2 − R5 − R7 and R2 − R6 − R7

have a 60ms transmission delay; links R3 − R8 − R10 and
R3 −R9 −R10 have a 40ms transmission delay)

Network capacity
200Mbps/
100Mbps

250Mbps/
500Mbps

500Mbps/
1Gbps

ECMP mapping STD: 71503
AVGT: 117002

STD: 284829
AVGT: 343431

STD: 935580
AVGT: 888124

RTT-based
mapping (%)

STD: 35.43
AVGT: 20.30

STD: 30.44
AVGT: 28.88

STD: 42.95
AVGT: 13.13

Throughput-based
mapping (%)

STD: 43.78
AVGT: 27.06

STD: 54.33
AVGT: 37.21

STD: 72.66
AVGT: 12.37

TABLE III: Results for identical transmission delays for
both paths, but asymmetric bandwidth capacities (every link
of Path1 has 200Mbps/500Mbps/1Gbps bandwidth capacity
which is twice the bandwidth capacity of the links from Path2:
100Mbps/250Mbps/500Mbps)

algorithm depicted in listing 1) so that after the weights for
both network paths are computed we further scaled these
weights as following: we scaled the weight of Path1 by 66%
and scaled the weight of Path2 by 33% (because the network
capacity of Path1 is double the capacity of Path2). At the
same time, in order to facilitate fair competition we modified
the ECMP mapping for these experiments so that the ECMP
multihoming router R1 always maps 66% of the multihoming
flows on Path1 and 33% of the flows on Path2.

V. CONCLUSIONS AND FUTURE WORK

We have presented a multihoming routing solution for band-
width aggregation. Our solution comes in the form of a virtual
tunnel that connects two sites through multiple independent or
quasi-independent network paths. The routing solution maps
local flows on the possible outgoing network paths so that
these flows use a larger aggregated bandwidth in changing
network conditions. The routing solution dynamically adapts
the flow mappings on the outgoing network paths so that a
path with a higher load receives fewer local multihoming flows
than a network path with a light load. We developed a RTT-
based and a Throughput-based strategy for estimating the load
(congestion) on a network path. Both strategies involve only
passive measurements and they require maintaining a fairly
low amount of state per flow at the edge router. We have tested
our bandwidth aggregation mechanism in a simulated network
and we showed that our routing solution performs better than
ECMP routing in terms of total aggregated throughput and
fairness between multihoming flows. As future plans, we want
to evaluate the performance of both mapping strategies with
self-limiting flows (non-greedy TCP flows). Also we would

like to study how two such multihoming routing solutions
interact with each other.
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