
Experience with Teaching PDC Topics into
Babeş-Bolyai University’s CS Courses

Virginia Niculescu1 and Darius Bufnea2

1 Faculty of Mathematics and Computer Science
Babeş-Bolyai University, Cluj-Napoca

vniculescu@cs.ubbcluj.ro
2 bufny@cs.ubbcluj.ro

Abstract. In this paper, we present an analysis of the outcomes of
teaching Parallel and Distributed Computing within the Faculty of Math-
ematics and Computer Science from Babeş-Bolyai University of Cluj-
Napoca. The analysis considers the level of interest of students for dif-
ferent topics as being determinant in achieving the learning outcomes.
Our experiences have been greatly influenced by the specific context de-
fined by the fact that the majority of the students are already enrolled
into a software company either as interns in an internship program or as
employees. The level of interest of students for a specific topic is deter-
mined by the development of the IT industry in the region. The learning
activity is in general influenced by this specific context, and a new, high
demanding topic as Parallel and Distributed Computing is even more
influenced, when is to be taught to the undergraduate level. This anal-
ysis further leads to a more general analysis on the appropriateness of
introducing PDC topics, or other relatively advanced topics, to all un-
dergraduate students in CS, or to consider newly defined educational
degrees.
Keywords: Parallel and distributed programming, curricula, courses,
undergraduate, IT industry, workforce.

1 Introduction

Recent years have brought an explosive growth in multiprocessor computing,
including multi-core processors and distributed data centers. The mass mar-
keting of multi-cores and general-purpose graphics processing units induces the
possibility for common users to rely on its effectiveness. This enforces the soft-
ware developers to efficiently use it, and also to contribute to the technology
development.

As a consequence, there is a clear need for students general education courses
computing related to be aware of the role that parallel and distributed computing
technologies play in the computing landscape.

The ACM/IEEE Curricula 2013 Report [9] and the NSF/IEEE-TCPP Cur-
riculum Initiative on Parallel and Distributed Computing [5], argue that the
undergraduate computer science programs should include topics in parallel and
distributed computing (PDC).

This approach implies important changes and their impact should be care-
fully analyzed.

Babeş-Bolyai University is the biggest university of Romania, even though its
host city, Cluj-Napoca, is only the second largest in Romania (after Bucharest).
It is also the oldest university of the country, but at the same time it is a dynamic
and constructive institution well integrated into society and oriented towards the
future.

The Faculty of Mathematics and Computer Science follows the Bologna sys-
tem of study. In the last decade the number of students attending Computer
Science has continuously increased, exceeding in 2016-2017 academic year 2600
students enrolled in undergraduate, graduate and doctoral programmes.

Parallel and distributed computing topics have been studied at our faculty
especially at master level programs, but still there were some modules related to
concurrency, multi-threading and client-server application, RPC, RMI included
into some curriculum courses. In 2015 a dedicated compulsory course Parallel
and Distributed Programming has been introduced for students in the third year
of study. Before this, it was also an elective course Paradigms and Techniques of
Parallel Programming that aimed to introduce the main concepts and paradigms
of parallel programming; the curriculum changes for this course addresses more
advanced topics.

In 2014 a master program with the title High Performance Computing and
Big Data Analytics has been included into academic program of our faculty. This
offers the students the possibility of acquisition of theoretical, applicative and
practical knowledge in high performance computing but also on using HPC in
data analysis.

In terms of PDC infrastructure, the university owns a hybrid (High Perfor-
mance Computing + Cloud Computing) cluster, acquired in 2015, capable of
reaching 40 Tflops in Rmax (sustained) and 62 Tflops in Rpeak (theoretical).
The HPC component has 68 nodes with a total of 1360 physical computing cores
for the whole HPC component. Also, 6 nodes are hosting an additional Intel Phi
coprocessor, while 12 others are equipped with 2 Nvidia Tesla K40 GPU each.

This paper intends to present the evolution of courses that include modules
from the topic of PDC. Also a broad analysis of the outcomes of these teach-
ing subjects in correlation to the level of interest of the students for them is
presented.

The next section presents the existing courses, and modules, and section 3
describes the particular context of our region that has an important influence
on the level of interest of the students for different subjects. Section 4 shows the
analysis results and their correlation, and the final conclusions are presented in
section 5.

2

2 The Subject of Analysis

As in other reports on various curricula, we will use Bloom’s classification [1] (B
class) considering also a correlation to ACM level of mastery. So, we will use the
following classes:

– K = Know the term (⇔ Familiarity)
– C = Comprehend so as to paraphrase/illustrate (⇔ Usage)
– A = Apply it in some way (requires operational command) (⇔ Assessment)
– N = Not in Core, but can be in an elective course

The courses from the undergraduate curriculum that address Parallel and
Distributed Computing topics are presented in Table 1. The number of students
enrolled is about 180 for a compulsory course and varies between 30 and 70 for
an elective one.

Table 1. Undergraduate courses addressing PDC topics

Course name
Semester
of study ECTS

Hours per week

(course, seminar, lab)

Operating Systems (OS) 2 5 2,1,2

Advanced Programming Methods (APM) 3 6 2,2,2

Computer Networks (CN) 3 6 2,0,2

Systems for Design and Implementation (SDI) 4 6 2,1,1
Parallel and Distributed
Programming (PDP) 5 6 2,1,2
Paradigms and Techniques of Parallel

Programming (elective) (PTPP) 6 7 2,0,1

At the master level there are other courses related to PDC from which we
may mention the following: ’Formal Models of Concurrency’, ’Operating Systems
for Parallel and Distributed Architectures’, ’Models in Parallel Programming’,
’Functional Parallel Programming for big Data Analytics’, ’Workflow Systems’,
’Grid, Cluster and Cloud Computing’, ’Algorithms, Models, and Concepts in
Distributed Systems’, ’GPU and Distributed Architecture Computing’. Most
of these courses are part of the High Performance Computing and Big Data
Analytics or Distributed Systems in Internet graduate programmes’ curricula.

The next two tables emphasis (to a great extent but not completely) the
PDC topics discussed in these courses. Table 2 presents some general topics
with the focus on concepts, and Table 3 shows the topics for which concrete
implementations are analysed.

A certain topic could be introduced in a certain course where the correspond-
ing learning outcome belongs to (K) or (C) in Bloom’s classification, and then
it is discussed to a following course where the learning outcomes are moved to a

3

Table 2. General conceptual topics. The table emphasizes the main concepts associated
to the corresponding courses were they are discussed.

Topic B class Courses

SISD/SIMD/ SPMD/ MIMD K PDP,PTPP

Computation decomposition strategies C PDP, PTPP
Data Distribution C PDP, PTPP
Functional Decomposition C PDP, PTPP
PCAM methodology K PTPP

Synchronisation Concepts C OS,PDP,PTPP
processes, pipe, fifo C OS
critical section, race condition C OS, PDP, PTPP
mutex, semaphore, monitor C OS, PDP, PTPP
barriers, conditional variable C PDP, PTPP
deadlock, livelock C OS, PDP, PTPP
starvation, fairness K OS, PDP

Tasks and threads C APM, CN, PDP, PTPP

Non-determinism C PDP, PTPP

Performance metrics C PDP, PTPP
Speedup, Efficiency, Cost C PDP, PTPP
IsoEfficiency K PTPP

PRAM C PDP, PTPP
Brent Theorem K PTPP

Dependencies A PDP, PTPP
Task graphs K PDP, PTPP

Divide & conquer (parallel aspects) A PDP, PTPP
Recursion (parallel aspects) C PDP, PTPP
Master-slave A CN, PDP
Pipeline (parallel aspects) A PDP, PTPP

Scalability K PDP, PTPP

Granularity K PDP, PTPP

more advanced level by Bloom’s classification. So, for example, the semaphore
concept is first introduced at Operating Systems course considering an outcome
of class (K), and then is discussed again at Parallel and Distributed Program-
ming course where a more deeply understanding is provided and also it is used
in the context of the current implementations in Java or C#.

Examples of parallel algorithms are given especially at the Paradigms and
Techniques of Parallel Programming course. In the curriculum there is a course
of Data Structures and Algorithms – DSA, but at the moment the possible par-
allelization of the algorithms is not treated there. The parallelization techniques
are introduced at PDP course, and then they are detailed at PTPP course.
Still, time-complexity and space-complexity issues for sequential algorithms are
analysed at DSA, and so when the parallel programs performance metrics are
introduced we may start from some already introduced concepts.

4

Table 3. Specific topics ⇒ implementation oriented.

Topic B class Exemplification Courses

Shared memory A Java, C/C++, C# OS ,PDP

Thread/Task spawning A Java, C/C++, C# OS, APM, SDI,
CN, PDP

Executors,Threads pools A Java APM, PDP, PTPP
Work stealing K Java PTPP

Synchronisation tools A OS,PDP,PTPP
mutex, semaphore A Java, C/C++, C# OS, PDP, PTPP
barriers, conditional variable A Java, C PDP, PTPP

Asynchrony A PDP, PTPP
Futures/promises/Async tasks A Java, C++ PDP, PTPP

Streams A Java PDP, PTPP

Parallel loop A C/C++,OpenMP PDP, PTPP

Hybrid C CUDA/C++ PDP, PTPP

Distributed memory C PDP, PTPP
Message passing C MPI, C/C++ PDP, PTPP
Broadcast, Scatter/Gather C MPI, C/C++ PDP, PTPP

Client Server A C/C++, Java, C# SDI, CN, PDP
RPC, RMI A Java, C# SDI

P2P K PDP

3 The Context of the Analysis

Cluj-Napoca is now the most important educational and economic center in
Transylvania and the second largest in Romania after Bucharest and it has a
long standing tradition in IT development - the beginnings of the computer
sciences in Cluj are situated around the years 1960. According to a recent study,
done by iTech Transilvania Cluster, Cluj has the highest density of IT employees
in Romania, 1 in 25 employees working in this industry [11]. A decade ago,
when most of the IT companies were founded, the main activity of Romanian
software industry was outsourcing. On the long run this had scalability issues
since the number of potential new employees, although raising, couldn’t satisfy
the increasing market demand. Another important factor was that man-day rates
in neighbor countries were very competitive. What tip the balance in favor of
Romanian IT specialists is that half of them are software developers and that
almost 90% of them speak English. The economic factor also had an important
influence in this together with the focus on education proven by students’ results
in Informatics and Math Olympiads or design competitions over the years [8].
Outsourcing is still the main activity but the current trends are moving towards
innovation (startups or developing of own products) and providing high level
roles (such as solution architects, business analysts or project managers) and
business knowledge to clients in order to achieve added value for the constantly
increased rates.

5

The cooperation between students and companies starts usually with an in-
ternship program (required by the academic curriculum), which is followed by
real employment before graduation. So, when we discuss the impact of some
changes in the academic curricula, we have to consider the fact that the feedback
that we obtain from students, includes also, indirectly, feedback from industry.

There is a known gap between academic world and the industry. The industry
is productivity oriented with some expense in the software quality. Consolidated
frameworks, libraries and APIs are frequently used in the development, alongside
development tools that are required in a productive environment.

This is why there are companies that can afford to hire students even from
their first years of study, and encourage them for early employment with the
promise that they will learn “all they have to know” at the workplace. (Of
course their perspective is on the present day, without considering the future.).
This comes with the drawback that students focus less on obtaining general
knowledge in computer science and they start learning/using only specific fields
of computer science (database, user interface development, etc.). Often enough
students that are not yet employed are reluctant to learn things that wouldn’t
help them during an internship or job interview.

The development is very often based on “applying patterns... ” but the mean-
ing of the term – pattern, in this context, is not the same with the one used in
[3], where it is used to emphasise the situation when a design pattern (a well
defined solution) is used in a new context in a creative way. Here, we have to
understand that the software is built using specific framework and technologies
by composing components based on some specific recipes.

So, many times the developers build the software by using some tools and
without a deep understanding of what they are really doing. The leading ques-
tions are: “how to do”, “what to apply” and not “why”, or “what is hidden
behind”.

It is important to say that the described situation has a large spreading, but
it is not generalized. Not all companies adopt this kind of development, but there
is a large majority that has an important influence.

The university purpose is to prepare the young minds for whatever is out
there in the industry without limiting the knowledge to a specific area. The
graduates need to acquire enough information from all the fields in such a way
that they can face the industry switches without too much effort, having the
basics in place.

4 The Analysis

In order to move from “traditional” development to distributed development,
the students need to posses the most basic knowledge of development. It is al-
ways easier to ‘build’ on top of something that has solid ground. The challenges
that come from the current industry context (students start focusing on employ-
ment rather than finalising their studies) trigger different approaches regarding
teaching techniques:

6

– Before moving to a topic that requires specific background, we need to vali-
date that students have this background; this comes with the drawback that
some of the students that already have the background cannot move faster
to the specific distributed programming topics, and they become distrustful.

– Some of the basic courses have been condensed or made optional in order to
accommodate the students needs to have the bare minimum knowledge for
employment.

In our study we went from the premise that the success of introducing new
topics in the curriculum, and consequently achieving the desired learning out-
comes, depend in a great measure on the level of interest of the students in that
topic. In the context described in the previous section, we are aware that the
level of interest of the students for one topic and another depend very much if
they are working for a company or not, and when they have started to do this.

Table 4. Level of interest for general conceptual topics.

Topic Level of interest Level of interest
2nd year 3rd year

SISD/SIMD/ SPMD/ MIMD 1 1,87

Computation decomposition strategies 1 4.5
Data Distribution 1,37 3
Functional Decomposition 1 3,12
PCAM methodology 1 3,25

Synchronisation Concepts 2,56 3,75
processes, pipe, fifo 3,75 3
critical section, race condition 1,5 3,25
mutex, semaphore, monitor 2,25 3,18
barriers, conditional variable 1,62 3,25
deadlock, livelock 3 4,37
starvation, fairness 1 3

Tasks and threads 3,75 4.5

Non-determinism 1,31 3,87

Performance metrics 2,87 3,12
Speedup, Efficiency, Cost 3,06 4,25
IsoEfficiency 1,25 1,75

PRAM 1 2
Brent Theorem 1 1.75

Dependencies 2,37 3
Task graphs 1,62 1,87

Divide & conquer (parallel aspects) 3,68 2,75
Recursion (parallel aspects) 3,81 2,62
Master-slave 1,5 4,25
Pipeline (parallel aspects) 3 3,37

Scalability 2,06 3

Granularity 1,37 2

7

Table 5. Level of interest for the specific topics.

Topic Exemplification Level of interest Level of interest
-2nd year -3rd year

Shared memory Java, C/C++, C# 2,12 3,62

Thread/Task spawning Java, C/C++, C# 2,93 4,12
Executors,Threads pools Java, C# 2,31 4,5
Work stealing Java(ForkJoin) 1,37 4

Synchronisation tools
mutex, semaphore Java, C/C++, C# 2,75 3,75
barriers, cond.variable Java, C/C++ 2,25 3,25

Asynchrony
Futures/promises 1,5 4,12
Async tasks Java, C++ 3 3,12

Streams Java 2,06 4,25

Parallel loop C/C++,OpenMP 3,25 3,75

Hybrid CUDA/C++ 2,25 2

Distributed memory
Message passing MPI, C/C++ 2 2,12
Broadcast, Scatter/Gather 3,25 2

Client Server C/C++, Java, C# 4,25 4
RPC, RMI 3,68 2,75

P2P 1,75 2,75

So, the first steps of our investigation was to find out the level of interest of
students for the topics specified in Tables 1 and 2. For each topic they have been
asked to choose a value between 1 and 5 (1 represents the lowest level of interest
and 5 represents the highest level of interest). The students of the second and
third year of study have been asked to participate in our analysis. The results
are reflected in Table 4 and Table 5.

The differences between the two categories are given by the fact that the stu-
dents of the second year haven’t studied yet some of the questionnaire included
topics, but also, by the distribution of their employment per year of study:

– 10% students of the first year of study,
– 25% students of the second year of study,
– 60% students of the third year of study,
– 75% students at the end of the third year.

(The students have a mandatory internship of 3 weeks between the 2nd and the
3rd year, and this is the moment when almost all get hired.)

Parallel programming is not easy if we have to control threads/processes ex-
ecutions, synchronization, communication, etc. As the level of abstraction is in-
creasing, the things could become simpler, but an associated performance degra-
dation could appear, too[6]. So, we may work with frameworks and libraries that
make the parallel programming easier and probably more attractive for students.

8

On the other hand, this way the main concurrency issues will not be well under-
stood. Also, in contexts where the performance is a critical issue, the ability to
work only with high level frameworks would not be enough.

There is a large interest from students to learn APIs and tools that implic-
itly use parallelization without the explicit control from the programmers (Java
parallel streams, Scala parallel collection, OpenMP). This approach has the ad-
vantage of offering a simple and rapid development and also offers a high degree
of confidence in the correctness of the resulted code. It is known that parallel
programming is sensitive to hidden errors that are very difficult to detect and
hence to debug. On the other hand the programmers are limited to the defined
constructions, and also cannot control very well the level of performance.

The analysis includes also the results obtained by the students for the tests
and assignments of the curriculum required course Parallel and Distributed Pro-
gramming. The evaluation for this course has been based on the followings tests
and assignments:

1. Practical works/assignments (relative short problems that should have been
implemented using discussed strategies and technologies);

2. Multithreading practical test (a problem of a medium complexity that had
to be solved using threads – explicit thread creation);

3. MPI practical test (a simple problem that had to be solved using MPI);
4. Theoretical test (written exam).

The corresponding results for these evaluations are presented in Figure 1.
Practical works included:

– some multithreading examples in C/C++, Java, and C#,
– a very simple CUDA example,
– a client-server application that also includes asynchronous tasks, and
– a simple MPI example.

The students had to solved them independently, at home, and then present them
to the instructors.

The practical tests assume solving a given problem in a given period of time,
on the students’ laptops – if they chosen this way; computers from the faculty
laboratories could also be used.

From these results, we may consider that MPI programming have been proved
difficult for students. A deeper analysis emphasizes that, in fact, the interest of
the students in learning MPI was low.

The students are much more confronted to using multithreading program-
ming, for different types of applications, and this leads to a much better knowl-
edge acquisition. This includes working with threads directly or using APIs such
as: OpenMP or Java Streams.

The theoretical evaluation shows the fact that even the students declare that
they have certain interest in studying concepts, still either because they don’t
have enough time (being involved in others activities as working for companies)
or because they looses their ability for theoretical approaches, the results are
not very good.

9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

not solved partial solution solved

Multithreading practical test

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

not solved partial solution solved

MPI practical test

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Absent Insufficient Satisfactory Good Very good

Practical assessments results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Absent Insufficient Satisfactory Good Very good

Written exam results

Fig. 1. Evaluation results.

Since the students are soon to be enrolled in productive activities, they are
much oriented on practical skills. Hence, the results obtained for practical works
in correspondence with the results of the theoretical test confirm this situation.

For the elective course Paradigms and techniques of parallel programming
(PTPP) the students have been allowed to choose a paradigm and a technology
for solving a problem in a parallel way. This problem could have been chosen
from a list of proposed problems, but the students also had the possibility to
propose new ones. From the 35 students that attended this course in the current
academic year (2016-2017), only one has chosen MPI as a programming model.
All the others chosen to go on the multithreading paradigm and to use different
implementation languages (Java – 23, C# – 5, C++ – 4, Scala –2). The project
also required to do a written documentation that includes design pattern oriented
analysis of the design decisions, theoretical performance evaluation and results
of a set of the empirical testing.

At this elective course, some techniques of algorithm parallelization are dis-
cussed, and some concrete examples for well know problems are analyzed (sort-
ing, searching, matrix multiplication algorithms, ...). Even if the level of interest
for these was not formally evaluated, we may say that the students consider
them interesting. These techniques have been used in a certain measure by the
students in the development of their projects.

Even for this elective course, which is chosen by the students that have an
increased interest in parallel programming, the students’ choices are influenced

10

by the mainstream technologies and their abilities in working in a specific pro-
gramming language. These abilities are on their turn influenced by their personal
experience, which is, in a vast majority of cases, driven by their employers and
industry demands, not by the academic environment.

We have also received some informal feedback from direct discussions with
the students that emphasizes the fact that an orientation on distributed aspects
of programming is considered by them much useful than an orientation on par-
allelization techniques and tools.

5 Conclusions

The main conclusion of our experience with teaching PDC topics is that even if
they are very necessary and important to be studied, due to the last development
of systems architectures and of the associated programming, it is also very im-
portant to take into consideration the latest approaches and paradigms applied
in the IT industry. The need for high productivity induces some changes in the
way the programming activity and software systems construction are developed.
All these lead to a new category of software developers which are not supposed
to understand all the components that they usually assemble. An adapted and
simplified curriculum should be in this case specified. In such a curriculum some
PDC topics should be included, but in a pragmatic, usage-oriented way – how
to use parallel programming frameworks/libraries, etc.

Also, there are some topics – as MPI – that have a great importance for the
well understanding of some basic concepts of Parallel Programming, but they
are not yet very much used in the industry. This leads to a low level of interest
for this topic from the undergraduate students.

Also, the acquisition of the theoretical concepts and general principles is not
very good, since our students are now, very much oriented on achieving practical
abilities.

Master students that choose a specialization that includes High Performance
Computing, have of course, a much higher degree of interest and opening to fields
as Scientific Computation, Models of Computation, or Correctness and Formal
Methods.

The premise of our study was that the success of introducing new topics
in the undergraduate curriculum, and most importantly achieving the desired
learning outcomes, depend in a great measure on the level of interest of the stu-
dents in that topic. This premise proved to be correct.
On the other hand, the level of interest on different topics of Parallel and Dis-
tributed Computing depends very much on the students’ levels. The distinction
between undergraduate and master students is very clear, but between under-
graduates we may emphasise at least two classes of interest.

A solution could be based on moving more topics on the elective courses.
Another, more complex solution, would involved also other Computer Science
fields and introducing a new defined educational degree. A proposal that comes

11

from Cluj Innovation City Project [10] is to develop Vocational Studies. The pro-
posal claims that this way an important part of the IT industry employees could
come directly from an IT related vocational curricula, and this would reduce
part of the pressure on the employment market, but most importantly would
engage young people into the industry in their early 20ties. (The drawbacks of
this proposal have not been studied, yet.)

There is an important trend in the software development in using Parallel and
Distributed Computing and, at the same time, in using in a more efficient way
the present hardware resources. There is also a wide acceptance that “Parallelism
is the future of programming”. Still, we may paraphrase the title of the paper of
Domenico Talia: “Parallel computation still not ready for the mainstream” [7]
and say: “Mainstream still not ready for [all kind of] Parallel Computation”.

References

1. B.S. Bloom, M.D. Engelhart, E.J. Furst, W.H. Hill, D.R. Krathwohl Taxonomy of
educational objectives: The classification of educational goals. Handbook I: Cogni-
tive domain. New York: David McKay Company.(1956).

2. David J. John, Stan J. Thomas. Parallel and Distributed Computing
across the Computer Science Curriculum. Parallel & Distributed Process-
ing Symposium Workshops (IPDPSW), 2014 IEEE International. DOI:
10.1109/IPDPSW.2014.121.

3. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design patterns: elements of
reusable object-oriented software. 1994. Addison-Wesley Longman Publishing Co.,
Inc..

4. Guoming Lu et al. Integrating Parallel and Distributed Computing Topics
into an Undergraduate CS Curriculum at UESTC. Parallel and Distributed
Processing Symposium Workshop (IPDPSW), 2015 IEEE International DOI:
10.1109/IPDPSW.2015.66

5. Sushil K. Prasad et al. 2012. NSF/IEEE-TCPP Curriculum on Parallel and Dis-
tributed Computing - Core Topics for Undergraduates - Version I, http://cs.gsu.
edu/~tcpp/curriculum/, 55 pages.

6. David B. Skillicorn, Domenico Talia. Models and languages for parallel computa-
tion. Journal ACM Computing Surveys, Volume 30 Issue 2, June 1998, pp. 123-169.

7. Domenico Talia. Parallel computation still not ready for the mainstream. Commu-
nications of the ACM. Volume 40 Issue 7, July 1997, pp. 98-99.

8. Bryan Martin. The Silicon Valley of Transylvania. Apr 6, 2016, https://

techcrunch.com/2016/04/06/the-silicon-valley-of-transylvania/.
9. *** ACM Curricula 2013 Report. https://www.acm.org/education/CS2013-

final-report.pdf. pp 144-154.
10. *** Cluj Innovation City. http://www.clujinnovationcity.com, retrieved May

10, 2017.
11. *** iTech Transilvania Cluster study by ARIES, http://itech.aries-

transilvania.ro/, retrieved May 10, 2017.

12

