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Abstract: Parallel programming is more complex than sequential programming. It is therefore more difficult to achieve
the same software quality in a parallel context. High-level parallel programming approaches are intermediate
approaches where users are offered simplified APIs. There is a trade-off between expressivity and program-
ming productivity, while still offering good performance. By being less error-prone, high-level approaches can
improve application quality. From the API user point of view, such approaches should provide ease of pro-
gramming without hindering performance. From the API implementor point of view, such approaches should
be portable across parallel paradigms and extensible. JPLF is a framework for the Java language based on
the theory of Powerlists, which are parallel recursive data structures. It is a high-level parallel programming
approach that possesses the qualities mentioned above. This paper reflects on the design of JPLF: it explains
the design choices and highlights the design patterns and design principles applied to build JPLF.

1 INTRODUCTION

Even if nowadays parallel programming is used in al-
most all software applications, writing correct parallel
programs from scratch is very often a difficult task.
The designers of parallel programming APIs or lan-
guages face three conflicting challenges. First, they
need to provide the users an API that is as easy as
possible to use, and as high-level as possible to make
programmers productive in writing quality software.
Secondly, they need to provide an API that offers
good performances. Finally, as parallel architectures
are numerous and evolve, they need to provide an API
that is flexible enough to accommodate change in the
supported parallel paradigms.

We have been designing and developing a Java
API, named JFPL, for Java Framework for Power
Lists (Niculescu et al., 2017; Niculescu et al., 2019).
By being based on the PowerList theory introduced by
J. Misra (Misra, 1994), JFPL is a high-level parallel
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programming framework that allows building parallel
programs that follow multi-way divide and conquer
parallel programming patterns with good execution
performances both on shared and distributed memory
architectures.

The shared memory execution environment is
based on thread pools where the size of these pools
implicitly depends on the system where the execu-
tion takes place. The current implementation uses
a Java ForkJoinPool executor (Oracle, ), but oth-
ers could be used too. For distributed memory sys-
tems, we use MPI (Message Passing Interface) (MPI,
) in order to distribute processing units on comput-
ing nodes. However, MPI-based computations im-
ply a different parallel programming paradigm. JFPL
therefore supports both multi-threading in a shared
memory context and multi-processing in a distributed
memory context.

Allowing the support of multiple paradigms
requires the API to be flexible and extensible.
The framework was implemented following object-
oriented design principles in order to possess these
characteristics. Specifically, we have employed sepa-
rations of concerns in order to facilitate changing the
low-level storage and the parallel execution environ-



ment. In order to overcome the challenges brought
by the multiparadigm support, we have used different
design patterns, decoupling patterns having a defining
role.
Contribution: While our previous work was more
focused on presenting the API and performances, the
contribution of this paper is a reflection on the design
of the API. The paper details the design choices made
to build JFPL and the rationale behind them.
Outline: The remaining of the paper is organized as
follows. In Section 2, we give an overview of Pow-
erLists. Section 3 is devoted to a complex analysis of
the JFPL framework design and implementation. Re-
lated work is discussed in Section 4. We conclude in
Section 5.

2 AN OVERVIEW OF
POWERLIST THEORY

The PowerList data structure and its associated theory
have been introduced by J. Misra (Misra, 1994). Pow-
erLists provide a high level of abstraction especially
because the array index notations are not used.

PowerLists are homonogeously typed sequences
of elements. The size of a PowerList is a power of
two. A singleton is a PowerList containing a single
element. It is denoted by [v] for a value v. Two Pow-
erLists of the same size and same type for elements
are similar.

Two different constructors exist to combine two
similar PowerLists. The resulting PowerList has a
size that is the double of the size of the input Pow-
erLists:

• the operator tie yields a PowerList containing the
elements of p followed by elements of q;

• the operator zip returns a PowerList containing al-
ternatively the elements of p and q.

tie is denoted by |, and zip by \.
The functions on Powerlists are recursive func-

tions defined based on a structural induction. Usu-
ally, the base case considers the singleton list. The
recursive case may use either |, or \, or both for de-
composing and composing the PowerLists.

The higher-order function map, applies a scalar
function fs to each element of a PowerList. It can
be defined as follows:{

map( fs, [v]) = [ fs(v)]
map( fs, pl1 |pl2) = map( fs, pl1) |map( f , pl2)

Another correct definition of map could be also ob-
tained in a similar way, by using \ instead of |.

Considering an associative operator ⊕, the reduc-
tion of a PowerList can be defined as:{

red(⊕, [v]) = [v]
red(⊕, pl1 |pl2) = red(⊕, pl1)⊕ (red(⊕, pl2)

and red could be defined using \, too.
The implementation of the Fast Fourier Transform

(FFT) algorithm (Cooley and Tukey, 1965) on Pow-
erLists requires both | and \, and the FFT computa-
tions on Powerlists needs O(n logn) steps:{

fft([x]) = [x]
fft(p\q) = (Fp +u×Fq) |(Fp−u×Fq)

where Fp = fft(p), Fq = fft(q), u = powers(p), and
+,− are the correspondent associative binary opera-
tors extended to Powerlists. powers(p) is the Pow-
erList [w0,w1, ..,w|p|−1] where |p| denotes the size of
p and w denotes the 2nth principal root of 1.

The parallelism in all these functions is implicit.
Each application of an operator (zip or tie), used to
deconstruct the input PowerList, implies two inde-
pendent computations that may be independently per-
formed in parallel.

Having both | and \ makes the PowerLists theory
different from other theories of lists. Many parallel
algorithms benefit from being expressible using both
operators. However, the increased expressive power
offered to users of an API based on these theories,
induces some difficulties when these high-level con-
structs have to be implemented.

The considered class of PowerList functions is
characterized by the fact that the functions could be
computed recursively based on their values on the
split argument lists. This class includes a broad class
of functions as it has been proved in (Misra, 1994)
and (Kornerup, 1997): sorting algorithms (Batcher,
Bitonic, Odd-Even), prefix sum, Gray codes, to cite a
few.

PowerLists are restricted to lists whose length is a
power of two. The PList extension of PowerLists (Ko-
rnerup, 1997) lifts this restriction. PLists are also de-
fined based on tie and zip operators. For PLists, both
tie and zip, as constructors, are generalized to take as
arguments an arbitrary number of similar PLists. The
functions defined on PLists are similarly defined as
those over PowerLists. The difference is that they re-
ceive in addition a list of arities. Each time an input
PList needs to be split, the first element of the list of
arities, gives the number of PLists that should be cre-
ated. The product of all these arities should be equal
to the length of the PList argument, and the length of
this list gives the recursion depth.

We write n̄ the set of numbers i such that 0≤ i< n.
For n similar PLists pi, with i ∈ n̄, the generalized



tie is written |i∈n̄ pi, and the generalized zip is written
\i∈n̄ pi.
The map function on PLists can then be defined as:{

map( f , [], [a]) = [ f (a)]
map( f , n::l, |i∈n̄ pi) = |i∈n̄ map( f , l, pi)

where n::l denotes the list with head element n, and
with tail l (a list).

3 JPLF FRAMEWORK DESIGN

The framework’s design is based on the PowerList
theory, mainly on the types that this theory defines,
but also on the specific operations and properties that
these types have.

The main components of the framework are inter-
connected, although they have different responsibili-
ties, such as:

• data structures implementations,
• functions implementations,
• functions executors.

Design choice 1. Impose separate definitions
for these components allowing them to vary indepen-
dently.
The idea behind this design choice is that separation
of concerns enables independent modifications and
extensions of the components by providing alterna-
tive options for storage or for execution. Other data
structures such as PList are defined similarly as spe-
cializations of BasicList class.

3.1 PowerList Implementations

The type used when dealing with simple basic lists is
IBasicList. In relation to the PowerList theory, this
type is also used as a unitary super-type of specific
types defined inside the theory. The framework ex-
tension with types that match the PList and ParList
data structures is also enabled by this.
Design choice 2. Use the pattern Bridge (Gamma
et al., 1995) to decouple the definition of the special
lists’ types from their storage. Storage could be a
classical predefined list container.

The storage is a container object where all the el-
ements of a list are stored, but this doesn’t necessarily
mean that two neighbor elements of the same list are
actually stored into neighbor locations in this stor-
age: some distance could exist between the locations
of the two elements.

The reason for this design decision is to allow the
same storage being used in different ways, but most

importantly to avoid the data being copied when a
split operation is applied. This is a very important
design decision that influences dramatically the ob-
tained performance for the PowerList functions exe-
cution.

The result of splitting a PowerList is formed of
two similar sub-lists but the initial list storage remains
the same for both sub-lists having only the storage in-
formation updated (in order to avoid element copy).
Having a list ( l ), the storage information SI(l) is
composed of: the reference to the storage container
base, the start index start, the end index end, the in-
crement incr.

From a given list with storage information
SI(list) = (base, start, end, incr), two sub-lists
(left_list and right_list) will be created when
either tie and zip deconstruction operators are ap-
plied. The two sub-lists have the same storage con-
tainer base and correspondent updated values for
(start, end, incr).

Op. Side SI
tie left base, start, (start+end)/2, incr

right base, (start+end)/2, end, incr
zip left base, start, end-incr, incr*2

right base, start+incr, end, incr*2

If we have a PList instead of PowerList the split-
ting operation could be defined similarly by updating
SI for each new created sub-list. If we split the list
into p sub-lists then the kth (0≤ k < p) sub-list has
size = (end− start)/p and SI is:

Op. Sub-List SI
tie kth base, start+size*(k/p),

start+size*((k+1)/p), incr
zip kth base, start+k*incr,

end-(p-k-1)*incr, incr*k

tie and zip are the two characteristic operations used
to split a list, but they could also be used as construc-
tors. This is reflected into the constructors definition.

There are two main specializations of the
PowerList type: TiePowerList and ZipPowerList.
Polymorphic definitions of the splitting and combin-
ing operations are defined for each of these types,
which determine which operator to be used. Since
a PowerList could also be seen as a composition of
two other PowerLists, two specializations with simi-
lar names: DTiePowerList and DZipPowerList are de-
fined in order to allow the definition of a PowerList
from two sub-lists that don’t share the same storage.

The corresponding list data structure types are de-
picted in the class diagram shown in Figure 1.

3.2 PowerList Functions

The structure of the computation for a PowerList
function is expressed by specifying tie or zip decon-



Figure 1: The class diagram of the classes corresponding to lists implementation.

struction operators for splitting the PowerList argu-
ments and by the composing operator in case the re-
sult is also a PowerList.

For the considered PowerList functions, one Pow-
erList argument is always split by using the same op-
erator (and so it preserves its type – a TiePowerList
or a ZipPowerList). In case the result is a PowerList,
also the same operator is used at each step of the con-
struction of the result.

PowerList functions may have more than one
PowerList argument, each having a particular type:
TiePowerList or ZipPowerList. The PowerList func-
tions don’t need to explicitly specify the deconstruc-
tion operators. They are determined by the argu-
ments’ types: the tie operator is automatically used
for TiePowerLists and the zip operator is used in
case the type is ZipPowerLists. It is very impor-
tant when invoking a specific function, to call it in
such a way that the types of its actual parameters are
the appropriate types expected by the specific split-
ting operators. The two methods toTiePowerList and
toZipPowerList, provided by the PowerList class,
transform a general PowerList into a specific one.

The result of PowerList function could be ei-

ther a singleton or a PowerList. For the functions
that return a PowerList a specialization is defined –
PowerResultFunction – for which the result list type
is specified. This is important in order to specify the
operator used for composing the result.

Design choice 3. In order to allow the imple-
mentation of the divide and conquer functions over
PowerLists, use the Template Method design pat-
tern (Gamma et al., 1995).

The divide and conquer solving strategy is
implemented in the template method compute of
the PowerFunction class. PowerFunction’s compute
method code snippet is presented below:

public Object compute() {

if (test_basic_case())

result = basic_case();

else { split_arg();

PowerFunction<T> left = create_left_function();

PowerFunction<T> right = create_right_function();

Object res_left = left.compute();

Object res_right = right.compute();

result = combine(res_left, res_right); }

return result;

}



Figure 2: The class diagram of classes corresponding to functions on PowerLists and their execution.

The primitive methods:

• combine

• basic_case

• create_right_function

• create_left_function

are the only ones that need an implementation for the
definition of a new function.

The functions create_right_function and
create_left_function specialized implementations
should be provided to guarantee that the new created
functions correspond to the specific definition. For
the other two, there are implicit definitions to release
the user to provide implementations for all. For
example, for map we have to provide a defini-
tion only for basic_case, whereas only a combine
implementation is required for reduce.

The function test_basic_case automatically ver-
ifies if the PowerList argument is a singleton, as per
the specification of the PowerList theory. There is
also the possibility to override this method and force
to end the recursion before singleton lists are encoun-
tered.

The compute method should be overridden only
for the functions that do not follow the classical def-
inition of the divide and conquer pattern on Pow-
erLists.

Figure 2 emphasizes the classes used for
PowerList functions and some concrete imple-
mented functions: Map, Reduce, FFT. The class
PowerAssocBinOperator corresponds to associative
binary operators (e.g. +,∗ etc.) extended to Pow-
erLists.

TuplePowerResultFunction has been defined in
order to allow the definition of tuple functions, which
combine a group of functions that has the same input
lists and a similar structure of computation. Combin-
ing the computations of such kind of functions could
lead to important improvements of the performance.

For example, if we need to compute extended Pow-
erList operators <+,∗,−,/ > on the same pair of in-
put arguments, they could be combined and computed
in a single stream of computation. This has been used
for the FFT computation case.

3.3 Multithreading Executors

The basic sequential execution of a PowerList func-
tion is done simply by invoking the corresponding
compute method.

In order to allow further modification or spe-
cialization, the definition of the parallel execu-
tion of a PowerList function is done separately.
IPowerFunctionExecutor is the type that covers the
responsibility of executing a PowerList function. This
type provides a compute method and also the methods
for setting, and getting the function that is going to
be executed. Any function that complies with the di-
vide and conquer pattern could be used for such an
execution.
Design choice 4. Define separate executor classes
that rely on the same operations as the primitive meth-
ods used for the PowerList function definition.

The class FJ_PowerFunctionExecutor implemen-
tation relies on the ForkJoinPool Java executor, which
is an implementation of the ExecutorService inter-
face. This class has been designed to be used for
computation that can be split recursively into smaller
batches.

Other implementations can be easily developed, in
order to allow the usage of other executors. Figure 3
shows the implemented classes corresponding to the
multithreading executions based on ForkJoinPool.

The simple definition of the recursive tasks that
we choose to execute in parallel is enabled by this
executor: new tasks are created each time a split op-
eration is done.

As the PowerLists functions are built



Figure 3: The class diagram of classes corresponding to the multithreading executions based on ForkJoinPool.

public Object compute() {

Object result =null;

if (function.te st_basic_case()){

result = function.basic_case(); }

else{function.split_arg();

PowerFunction<T> left_function =

function.create_left_function();

PowerFunction<T> right_function =

function.create_right_function();

//wrap the functions into recursive tasks

if (recursion_depth == 0){

result = function.compute(); }

else{

FJ_PowerFunctionComputationTask<T> left_function_exec =

new FJ_PowerFunctionComputationTask<T>(left_function,

recursion_depth-1);

FJ_PowerFunctionComputationTask<T> right_function_exec =

new FJ_PowerFunctionComputationTask<T>(

right_function, recursion_depth-1);

right_function_exec.fork();

Object result_left = left_function_exec.compute();

Object result_right = right_function_exec.join();

result = function.combine(result_left, result_right);

}

}

return result;

}

Figure 4: compute for PowerFunctionComputationTask

based on the Template Method pattern, the
implementation of the compute method of the
FJ_PowerFunctionComputationTask is done similarly.
The same skeleton, is used in this implementation,
too. The code of the compute template method inside
the FJ_PowerFunctionComputationTask is shown in
the code snippet of Figure 4.

In this example, separate execution tasks wraps
the two PowerFunctions that have been created in-
side the compute method of the PowerFunction class
(right and left). A forked execution is called for
the task right_function_exec while the calling task
is the one computing the left_function_exec task.

3.4 MPI Execution

There is an obvious need for scalability for a frame-
work that works with regular data sets of very large
sizes. The ability to use multiple cluster nodes could
be attained by introducing MPI based execution of the
functions (Niculescu et al., 2019).
The command for launching a MPI execution has in
general the following form:

mpirun -n 20 TestPowerListReduce_MPI.class

where the -n argument defines the number of MPI
processes (20 is just an example) that are going to be
created.

So, the MPI execution is radically different
from the multithreading execution: each process
executes the same Java code and the differenti-
ation is done through the process_rank and the
number_of_processes that are used by the implemen-
tation code.

In the case of the execution on shared memory
systems, and so based on multithreading, the list split-
ting and combining operations were reduced to a con-
stant time O(1) since only the storage information
SI(l) characteristics of the new created lists should
be computed.

On a distributed memory system, based on an MPI
execution, the list splitting and combining costs could
not be kept small because data communication be-
tween processes is needed. Since the cost for data
communication is much higher than the simple com-
putation costs, we had to analyze very carefully when
these communications could be avoided.

PowerList functions are recursively defined on list
data structures, and each time we apply the definition
on non-singleton input lists, each input list is split into
two new lists. In order to distribute the work we need
to transfer one part of the split data to another pro-
cess. Similarly, the combining stage also could need
communication, since for combining stage we need to



apply operations on the corresponding results of the
two recursive calls.

In order to identify the cases when the data com-
munication could be avoided, the phases of PowerList
function computation were analyzed in details:
1. Descending/splitting phase that includes the op-

erations for splitting the list arguments, and the
additional operations, if they exist.

2. Leaf phase that is formed only of the operations
executed on singletons.

3. Ascending/combining phase that includes the op-
erations for combining the list arguments, and the
additional operations, if they exist.
The complexity of each of these stages is different

for particular functions.
For example, for map, reduce or even for fft, the

descending phase does not include any additional op-
erations. It has only the role to distribute the input
data to the processing elements. The input data is not
transformed during this process.

There are very few functions where the input is
transformed during the descending phase. For some
of these cases it is possible to apply some function
transformation — as tupling — in order to reduce the
additional computations. This had been investigated
in (Niculescu and Loulergue., 2018).

Similarly, we may analyze the functions for which
the combining phase implies only data composi-
tion (as map) or also some additional operations (as
reduce).

Through the combination of these situations we
obtained the following classes of functions:
1. splitting≡ data distribution

The class of functions for which the splitting
phase needs only data distribution.
Examples: map, reduce, fft

2. splitting 6≡ data distribution
The class of functions for which the splitting
phase needs also additional computation besides
the data distribution.
Example: f (p\q) = f (p+q)\ f (p−q)

3. combining≡ data composition
The class of functions for which the combining
phase needs only the data composition based on
the construction operator (tie or zip) being applied
to the results obtained in the leaves.
Example: map

4. combining 6≡ data composition
The class of functions for which the combining
phase needs specific computation used in order to
obtained the final result.
Examples: reduce, fft.

One direct solution to treat these classes of func-
tion as efficiently as possible would be to define dis-
tinct types for each of them. But the challenge was
that these classes are not disjunctive. The solution
was to split the function execution into sections, in-
stead of defining different types of functions.
Design choice 5. Decompose the execution of
the PowerList function into phases: reading, splitting,
leaf, combining, and writing.

Apply the Template method pattern (Gamma
et al., 1995) in order to allow the specified phases
to vary independently. Apply the Decorator pat-
tern (Gamma et al., 1995) in order to add specific
corresponding cases.

The Figure 5 emphasizes the operations’ types
corresponding to the different phases. For MPI
execution, we associated a different computational
task (CT) for each phase. The computational tasks
are defined as decorators, they are specific to each
phase, and they are different for functions that re-
turn PowerLists by those that return simple types
(PowerResultFunction vs. PowerFunction):

• MPI_PowerCT_split,
• MPI_PowerCT_compose, resp.
MPI_PowerResultCT_compose,

• MPI_PowerCT_read,
• MPI_PowerResultCT_write.

Some details about the implementations of
these classes are presented in Figure 6. The
class MPI_CTOperations provides a compute template
method and empty implementations for the different
step operations: read, split, compose, . . .

// compute method of MPI_CTOperations class

public Object compute(){

Object result;

read();

split();

result = leaf();

result = compose();

write();

return result;

}

The leaf operation encapsulates the effec-
tive computation that is performed in each pro-
cess. It can be based on multithreading and
this is why it could use FJ_PowerFunctionExecutor
(the association between MPI_PowerFunctionCT and
FJ_PowerFunctionExecutor). Hence, an MPI execu-
tion is a implicitly a combination of MPI and multi-
threading execution.

The compose operations in MPI_PowerCT_compose
and MPI_PowerResultCT_compose are defined based on



Figure 5: The classes used for different types of execution of a PowerList function.

the combine operation of the wrapped PowerList func-
tion.

The input/output data for domain decomposition
of parallel applications are in general very large, and
so these are usually stored into files. This introduces
other new phases in function computation if reading
and writing are added as additional phases (case 1), or
if they are combined with splitting (resp. combining
phases; in this case they introduce new variations of
the function computation phases (case 2).

If the data is taken from a file, then:
case 1 a reading is done by the process 0, followed

by an implementation of the decomposition phase
based on MPI communications;

case 2 concurrent file reads of the appropriate data
are done by each process.
The possibility to have concurrent read of the in-

put data is given by the fact each process needs to
read data from different positions on the input file,
and also because the data depends on known pa-
rameters: the type of the input data (TiePowerList
or ZipPowerList), the total number of elements, the
number of processes, the rank of each process, and
the data element size (expressed in bytes).

The difficulty raised from the fact that all the
framework’s classes are generic and also almost all
MPI Java implementations need simple data types to
be used in communication operations. The chosen
solution was to use byte array transformations of the
data through serialization.

Design choice 6. Use the Broker design pattern
in order to define specialized classes for reading and
writing data (FileReaderWriter) and for serializ-
ing/deserializing the data (ByteSerialization).

When the decomposition is based on the tie op-
erator reading a file is very simple and direct: each
process receives a filePointer that depends on its
rank from where it starts reading the same number of
data elements.

When the decomposition is based on the zip op-
erator, file reading requires a little bit more com-
plex operations: each process also receives a start-
ing filePointer and a number of data elements that
should be read, but for each next reading, another seek
operation should be done. The starting filePointer
is based on bit reverse (to the right) operation applied
on the process number.

For example, for a list equal to [1,2,3,4,5,6,7,8]
a zip decomposition on 4 processes leads to the fol-
lowing distribution: [ [1,5], [3,7], [2,6], [4,8] ].

In order to fuse the combining phase together with
writing, we applied a similar strategy. The conditions
that allow concurrent writing are: the output file to be
already created and each process writes values on dif-
ferent positions, these positions are computed based
on the process rank, the operator type, the total num-
ber of elements, the number of processes, and the data
element size.

Using this MPI extension of the framework, we
don’t need to define specific MPI function for each



Figure 6: Implementation details of some of the classes involved in the definition of MPI execution.

PowerList function. We just define an executor by
adding the needed decorators for each specific func-
tion: a read operation, or a split operation, and a
compose operation or a write operation, etc. The order
in which they are added is not important. In the same
time the operations: read, write, compose, etc. are
based on the primitives operations defined for each
PowerList function (which are used in the compute
template method). Also, they are dependent on the
total number of processes and the rank of each pro-
cess.

In order to better explain the MPI execution we
will consider the case of the Reduce function (Section
2). The following test case considers a reduction on
a list of matrices using addition. The code snippet
in Figure 7 emphasizes what is needed for the MPI
execution of the Reduce function.

As it can be noticed from the code, for an MPI
execution of a PowerList function we need only to
specify the ‘decorators’, and the files’ characteristics
(if it is the case).

The general form of a Powerlist function has a list
of PowerLists arguments. The reading should be pos-
sible for any number of PowerLists arguments. This
is why we have arrays for the files’ names and lists’
and elements’ sizes. For reduce we have only one in-
put list.

ArrayList<Matrix> base = new ArrayList<Matrix>(n);

AsocBinOperator<Matrix> op = new SumOperator<Matrix>();

TiePowerList<Matrix> pow_list =

new TiePowerList<Matrix>(base,0, n-1, 1);

PowerFunction<Matrix> mf =

new Power.Functions.Reduce(op, pow_list);

int [] sizes = new int[1]; sizes[0] = n;

int [] elem_sizes = new int[1];

elem_sizes[0] =

ByteSerialization.byte_serialization_len(new Matrix(0));

String [] files = new String[1];

files[0] = "date_matrix.in";

MPI_CTOperations<Matrix> exec =

new MPI_PowerCT_compose<Matrix>(

new MPI_PowerCT_read<Matrix>(

new MPI_PowerFunctionCT<Matrix>(mf, ForkJoinPool.

commonPool()),

files, sizes, elem_sizes) );

Object result = exec.compute();

Figure 7: The Reduce function

Design choice 7. Apply the Factory Method pattern
(Gamma et al., 1995), in order to simplify the specifi-
cations/creation of the most common functions.



3.5 Increasing Granularity

Ideally, describing parallel programs using Pow-
erLists implies the decomposition of the input data
using the tie or zip operator and each application of
tie and zip creates two new processes running in par-
allel, so that for each element of the input list there is
a corresponding parallel process.

If we consider the FJ_PowerFunctionExecutor,
this executor implicitly creates a new task that han-
dles the right-part-function. So, the number of cre-
ated tasks grows linearly with the data size. This leads
to a logarithmic time-complexity that depends on the
loglen of the input list.

However, in many situations, adopting this fine
granularity of creating a parallel process per element
may hinder the performance of the whole program.
One possible improvement would be to bound the
number of parallel tasks, i.e. to specify a certain level
until which a new parallel task is created:
Design choice 8. Introduce an argument –
recursion_depth – for the Executor construc-
tors; the default value of this argument is equal to the
logarithmic length of the input list (loglen l) and the
associated precondition specifies that its value should
be less or equal to loglen l.

When a new recursive parallel task is created this
new task will receive a recursion_depth decre-
mented with 1. The recursion stops when this
recursion_depth reaches zero.

This solution will lead to a parallel recursive
decomposition until a certain level and then each
task will simply execute the corresponding PowerList
function sequentially.

Still, there are situations when for a sequential
computation of the requested problem, a non recur-
sive variant is more efficient than the recursive one.
For example, for map, an efficient sequential execu-
tion will just iterate through the values of the input
list and apply the argument function. The equivalent
recursive variant (Eq. 2) is not so efficient since re-
cursion comes with additional costs.

In this case we have to transform the input list by
performing a data distribution. A list of length n is
transformed into a list of p sub-lists, each having n/p
elements. If the sub-lists have the type BasicList
then the corresponding BasicListFunction is called.
In the framework, this responsibility is solved by the
following design decision:
Design choice 9. Define a class Transformer that
has the following responsibilities:

• transforming a list of atomic elements into a list
of sub-lists and,

• transforming a list of sub-lists into a list of atomic
elements( f lat operation).

How the sub-lists are considered depends on the
two operators tie and zip, and the transformation
should preserve the same storage of the elements.

For the Transformer class implementation the
Singleton pattern should be used (Gamma et al.,
1995).

The transformation described above does not im-
ply any element copy and it preserves the same stor-
age container for the list. Every new list created has
p BasicList elements with the same storage. On cre-
ation, the storage information SI is initialized for each
new sub-list according to which decomposition oper-
ator was used (tie or zip) to create this new sub-list.
The time-complexity associated to this operation is
O(p). The Transformer class has the following im-
portant functions:

• toTieDepthList and toZipDepthList,
• toTieFlatList and toZipFlatList.

The execution model for these lists of sub-lists is
very similar and only differs for the basic case. If
an element of a singleton list, that corresponds to the
basic case is a sub-list (i.e. has the IPowerList type),
a simple sequential execution of the function on that
sub-list is called.

In our framework, sequential execution of func-
tions on sub-lists is based on recursion which is not
very efficient in Java. If an equivalent function de-
fined over IBasicList (based on iterations) could be
defined, then this will be used instead.
Remark. For PList, the functions and their possi-
ble multiparadigm executors are defined in a sim-
ilar way to those for PowerList. PList is a gen-
eralization of PowerList allowing the splitting and
the composition to be done into/from more than two
sub-lists. So, instead of having the two functions:
create_right_function and create_left_function,
we need to have an array of (sub)functions. Still, the
same principles are applied as in the PowerList case.

4 RELATED WORK

Algorithmic skeletons are considered an important
approach in defining high level parallel models (Cole,
1991; Pelagatti, 1998). PowerLists and their associ-
ated theory could be used as a foundation for a domain
decomposition divide and conquer skeleton based ap-
proach.

There are numerous algorithmic skeleton pro-
gramming approaches. Most often, they are im-
plemented as libraries for a host language. This



languages include functional languages such a
Haskell (Marlow, 2010) with skeletons implemented
using its GpH extension (Hammond and Portillo,
1999). Multi-paradigm programming languages
such as OCaml (Minsky, 2011) are also considered:
OCamlP3L (Cosmo et al., 2008) and its successor
Sklml offer a set of a few data and task parallel skele-
tons and parmap (Di Cosmo and Danelutto, 2012).
Although OCaml is a functional, imperative and ob-
ject oriented language, only the functional and imper-
ative paradigms are used in these libraries.

Of course, objected oriented programming lan-
guages such as C++, Python and Java are host
languages for high-level parallel programming ap-
proaches. Often object oriented features are used in a
very functional programming style. Basically classes
for data structures are used in the abstract data-type
style, with a type and its operations, sometimes only
non-mutable. This is the approach taken by the
PySke library for Python (Philippe and Loulergue,
2019) that relies on a rewriting approach for optimiza-
tion (Loulergue and Philippe, 2019). The patterns
used for the design of JFPL, are also mostly absent
from many C++ skeleton libraries such as Quaff (Fal-
cou et al., 2006) or OSL (Légaux et al., 2013). These
libraries focus on the template feature of C++ to en-
able optimization at compile time though template
meta-programming (Veldhuizen, 2000). Still, there
are also very complex C++ skeleton based frame-
works – e.g. FastFlow (Danelutto and Torquati, 2015)
– that are built using a layered architecture and which
target networked multi cores possibly equipped with
GPUs systems.

One of the programming languages suitable for
implementing structured parallel programming envi-
ronments that use skeletons as their foundation is
Java. The first skeleton based programming envi-
ronment developed in Java, which exploits macro-
data flow implementation techniques, is the RMI-
based Lithium (Aldinucci et al., 2003). Calcium
(based on ProActive, a Grid middleware) (Caromel
and Leyton, 2007) and Skandium (Leyton and Piquer,
2010) (multi-core oriented) are two others Java skele-
ton frameworks. Compared with the aforementioned
frameworks, JPLF could be used on both shared and
distributed memory platforms.

Unrelated to architectural concerns, but related to
the implementation of JFPL is that Java has been con-
sidered as a supported language by some MPI imple-
mentations which offer Java bindings. Such imple-
mentations are OpenMPI (Vega-Gisbert et al., 2016)
and Intel MPI (Intel, 2019). There are also 100% pure
Java implementations of MPI such as MPJ Express
(Qamar et al., 2014; Javed et al., 2016). Although

there are some syntactic differences between them, all
of these implementations are suitable for MPI execu-
tion. In our past experiments, we used Intel Java MPI
and MPJ Express and the obtained results were simi-
lar.

5 CONCLUSIONS

The framework presented in this paper has been archi-
tectured using design patterns. Based on this archi-
tecture, new concrete problems can be easily imple-
mented and resolved. Also, the framework could be
easily extended with additional data structures (such
as ParList or PowerArray (Kornerup, 1997)).

The most important benefit of the framework’s
internal architecture is that the parallel execution is
controlled independently of the PowerList function
definition. Primitive operations are the foundation
for the executors’ definitions, this allowing multiple
execution variants for the same PowerList program.
For example, sequential execution, MPI execution,
multithreading using ForkJoinPool execution or some
other execution model can be easily implemented. If
we have a definition of a PowerList function we may
use it for multithreading or MPI execution without
any other specific adaptation for that particular func-
tion.

For the MPI computation model it was manda-
tory to properly manage the computation steps of a
PowerList function: descend, leaf, and ascend. These
computation steps were defined within a Decorator
pattern based approach.

Many frameworks are oriented either on shared
memory or on distributed memory platforms. The
possibility to use the same base of computation and
associate then the execution variants depending on the
concrete execution systems brings important advan-
tages.

The separation of concerns principle has been in-
tensively used. This facilitated the data-structures’
behavior to be separated from their storage, and to en-
sure the separation of the definition of functions from
their execution.
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