
MIXDECORATOR: AN ENHANCED VERSION OF DECORATOR PATTERN

VIRGINIA NICULESCU,

BABEŞ-BOLYAI UNIVERSITY, CLUJ-NAPOCA

Abstract. Decorator design pattern is a very well-known pattern that allows additional functionality to be dy-
namically attached to an object. Decorators provide a flexible alternative to subclassing for extending functionality.
In this paper we analyse and design a pattern – MixDecorator – that could be considered an enhanced version of
the Decorator pattern, which does not just eliminate some constraints or limitations of the original one, but also
allows it to be used as a base of a general extension mechanism. This pattern introduces significant flexibility by
allowing direct access to all added responsibilities. Using it, we may combine different responsibilities and operate
with them directly and in any order. A complex example of using it for a collection framework design is presented.

Keywords: OOP, design patterns, decorator, responsibility, extensibility, features, framework

1. Introduction

The authors of Gang of Four Design Patterns book [GHJV94] argue in favor of object composition over class
inheritance. To the authors, ’delegation’ is an extreme form of object composition that can always be used to
replace inheritance. Decorator pattern is one of the patterns that express well exactly these issues.

We present in this paper an enhanced version named – MixDecorator – of the classical Decorator pattern
defined in [GHJV94]. The classical Decorator pattern offers a solution to extend the functionality of an object in
order to modify its behavior. Still, when we want to add new responsibilities, and not just to change the behavior
of an existing one, the classical Decorator pattern allows us to define such a decoration, but this is accessible
only if it is the last added one. The presented enhanced version does not just eliminate some constraints of the
classical pattern (e.g. limitation to one interface), but also allows it to be used as a base for a general extension
mechanism. This version introduces significant flexibility and abstraction. Using it, we may combine different
responsibilities, have direct access to all, and operate with them in any order.

The paper is structured as follows: next section succinctly describes the classical version of the Decorator
pattern and emphasizes the constraints imposed by it. Section 3 describes the new proposed pattern. Next,
in section 4 a complex example, which is designed using the new proposed pattern, is presented. The example
consists of a collections framework for which we consider features based definitions of collections.
Conclusions and future work are presented in section 5.

2. Decorator pattern

The Decorator pattern is a structural pattern used to extend or alter the functionality of objects at run-time
by wrapping them in an object of a decorator class. This provides a flexible alternative to using inheritance for

Figure 1. The class diagram of the standard Decorator pattern.

1

2 VIRGINIA NICULESCU, BABEŞ-BOLYAI UNIVERSITY, CLUJ-NAPOCA

modifying behavior. Decorator pattern is designed such that multiple decorators can be stacked on top of each
other, each one adding new functionality to the overridden method(s). Figure 1 shoes the corresponding class
diagram. It is usually agreed that decorators and the original object’s class share a common interface. This
means that objects based upon the same underlying class can be decorated in different manners. In addition, as
both the class of the object being modified and the class of the decorator share a base class, multiple decorators
can be applied to the same object to incrementally modify behavior[GHJV94, ST04].

2.1. Limitations of the classical Decorator pattern. As a possible usage scenario we may consider that we
have n responsibilities intended to be defined as decorations for a base class IComponent. These responsibilities are
defined as methods – f1, f2, ..., fn. As the pattern specifies, n decorator classes will be defined (Decorator1,
Decorator2 . . . Decoratorn), each defining the corresponding method, and they are all derived from a decoration
class DecoratedBase, which is in turn derived from IComponent. Theoretically, we may obtain any combination of
decorations but we only have the base class interface available.

So, if there are some responsibilities that are really new responsibilities (that changes the object interface) and
they are not used just to alter the behavior of the operations defined in the base class, they will be accessible
only if the last decoration is the one that defines them. We will refer to this kind of decorations as interface
responsibilities. More concretely, if responsibility f1 is a new interface responsibility and it is defined in the class
Decorator1, then the corresponding message could be sent only to an object that has the Decorator1 decoration,
but also only if this is the last added decoration; the following Java code snippet emphasizes this:

1 IComponent o = new Decorator1(new Decorator2(new ConcreteComponent ())));

2 ((Decorator1).o).f1();

3 IComponent oo = new Decorator2(new Decorator1(new ConcreteComponent ())));

4 // ((Decorator1).oo).f1(); ERROR

5 ((Decorator1)oo.getBase ()).f1(); //an improper solution

The emphasized solution has obviously several drawbacks:
• we have to apply an additional operation that allows decoration removal – getBase(); in case we don’t

have it, there is no solution;
• the functionality added by Decorator2 is lost (the behavior modification of the base operations brought

by Decorator2) ;
• if there are several decorations that should be removed then several additional operations are necessary;
• if we don’t know the exact position (order) of the searched decoration, the code becomes very complex

(a kind of reflection should be used);

In fact, removing the last decorations in order to reveal functionality is not a real solution since it breaks
the way in which decorated objects are supposed to be used. Also, it is an ad-hoc workaround that is based on
knowing the order in which decorations were added.

For example, we may consider the classes in Java IO streams library, where Decorator pattern is used.
FilterInputStream corresponds there to DecoratorBase and it’s derived from InputStream that corresponds to
IComponent. There are several decoration classes derived from FilterInputStream such as PushBackInputStream

that defines a method unread(), which is not defined in the FilterInputStream interface; BufferedInputStream

that just alters the behavior of the standard InputStream interface; or CheckedInputStream that maintains a
checksum of the data being read and allows using it based on the method getChecksum.

We may combine them, and decorate a concrete stream - e.g. FileInputStream - first with CheckedInputStream

and then with BufferedInputStream or/and with PushBackInputStream; then the getChecksum method is not
directly available.

1 PushbackInputStream pi = new PushbackInputStream(

2 new BufferedInputStream(

3 new CheckedInputStream(new FileInputStream("input"), new CRC32 ())));

4 // pi.getChecksum (); ERROR

Since, the class FilterInputStream does not provide an operation as getBase() not even the simplistic solution
presented before is not possible. (The class FilterInputStream has a field in but it is protected and so inaccessible;
a solution could be to derive all the classes derived from FilterInputStream and define for them a method
getBase() method that returns in.)

3. MixDecorator Pattern

3.1. General Definition. We specify the characteristics of the MixDecorator pattern by emphasizing in detail
what is specific to it.

MIXDECORATOR: AN ENHANCED VERSION OF DECORATOR PATTERN 3

Figure 2. The class diagram for the MixDecorator pattern.

3.1.1. Synopsis. Attach a set of additional responsibilities to an object dynamically. Allow access to all added
responsibilities. Provide a flexible alternative to subclassing for extending objects functionality and their types,
too (extending the set of messages that could be sent to them).

3.1.2. Context. You want to add a combination of additional capabilities onto an object. However, the additional
capabilities you want are highly variable, and could extend the interface of the base object. You want all additional
responsibilities to be directly available.

3.1.3. Problem. The classical Decorator pattern offers a solution to extend (decorate) the functionality of a
certain object in order to modify its behavior. It is usually agreed that decorators and the original class object
share a common interface. The problem appears when we want to add a new interface responsibility, and not
just to change the behavior of an existing one. Such a decoration could be defined, but it is accessible only if it
is the last added one.

3.1.4. Forces.

• Adding responsibilities should be transparent to clients.
• All responsibilities which are added at some point are directly accessible to the client.
• Simple and direct call for all decoration methods, not dependent of the exact position (order) of the

decoration where the desired responsibility is defined.
• It should be easy to change, e.g. withdraw or adding, responsibilities.
• Good efficiency, and easily extendable.

3.1.5. Solution. The structure of the MixDecorator is inspired by the Decorator but there are several important
differences that allow the achievement of the ’forces’. As for simple decorators we enclose the subject in another
object, the decorator object, but the decorator could have an interface that extends the general component
interface. The decorator forwards requests to the subject while performing additional actions before and after
forwarding.

The solution structure is presented in Figure 2. This makes a clear separation between IComponent and
DecoratorBase by introducing a general IDecorator interface that extends IComponent and adds only getBase()

method (this method is considered mandatory). The concrete class DecorateBase has almost the same definition
as the corresponding class from the classical Decorator (the difference is the additional method getBase()).

For a particular application, after the new responsibilities are inventoried, then particular IDecoratorOperations
and ConcreteDecoratorBase are defined. IDecoratorOperations defines the methods that correspond to all new
responsibilities. As it can be seen from Figure 2, ConcreteDecoratorBase is derived from DecoratorBase but also
implements IDecoratorOperations.

In order to better explain the pattern we will give some implementation details in Java 8.

4 VIRGINIA NICULESCU, BABEŞ-BOLYAI UNIVERSITY, CLUJ-NAPOCA

The concrete class ConcreteDecoratorBase gives a definition for each new added responsibility. It implements
IDecoratorOperations and extends DecoratorBase. The corresponding code hides a recursion that is used for
searching the method (for example f1()) that defines the new responsibility.

The corresponding Java code is:

1 public class ConcreteDecoratorBase extends DecoratorBase implements IDecoratorOperations {

2 public ConcreteDecoratorBase(IComponent base)

3 { super(base); }

4 public void f1() throws UnsupportedFunctionalityException{

5 try{

6 ((IDecoratorOperations)getBase ()).f1(); }

7 catch (ClassCastException e){//if base is not a decorator but a concrete component

8 throws new UnsupportedFunctionalityException("f1");

9 }

10 }

11 . . .

12 }

The following code snippet emphasizes the forces fulfillment; the execution throws no exception, and it can be
noticed that, for example, f3() could be called even if Decorator3 is the first added decoration.

1 IComponent c = new ConcreteComponent ();

2 IDecoratorOperations d = new Decorator1(new Decorator2(new Decorator3(c)));

3 d.operation ();

4 d.f3(); d.f1(); d.f2();

3.2. Extensions with other responsibilities. If other possible responsibilities are discovered as being appro-
priate to be used, these could be added using the following steps:

(1) Define a new interface – IDecoratorOperations Extended that extends IDecoratorOperations interface,
and defines the desired new responsibilities.

(2) Define a class – ConcreteDecoratorBase Extended that extends ConcreteDecoratorBase and implements
IDecoratorOperations Extended.

(3) (optional) Provide an adaptation that assures that all the responsibilities either added in the first design
iteration or in the next, could be combined in any order.

Figure 3 illustrates the new added classes.
The specified adaptation could be done using, for example, Adapter pattern. The previous decoration classes are
adapted to the new extended interface. For example the class Decorator2 Adapted is derived from Decorator2,
and implements IDecoratorOperations Extended; no method overriding is necessary.

But this also requires a basic implementation of the methods defined in IDecoratorOperations Extended.
Java 8 introduces default methods in interfaces. Implicitly, interfaces provide multiple type-inheritance, in

contrast to class-inheritance. Still, Java 8 interfaces introduce a form of multiple implementation inheritance, too.
A default method is a virtual method that specifies a concrete implementation within an interface: if any class
implementing the interface will override the method, the more specific implementation will be executed. But if
the default method is not overridden, then the default implementation in the interface will be executed[Java8].

The implementation of the method f4() in IDecoratorOperations Extended could be defined in Java as:

1 default void f4() throws UnsupportedFunctionalityException{

2 try{ ((IDecoratorOperations_Extended)getBase ()).f4(); }

3 catch(ClassCastException e){

4 throw new UnsupportedFunctionalityException("f4"); }

5 }

This definition assures that the first set of decorations could be combined with the new decorations in any order,
inclusive to wrap around the new decorations (optional step (3)).

The implementation of the class ConcreteDecoratorBase Extended is similar to that of ConcreteDecoratorBase.
Next, a usage example based on the presented structure is given:

1 IComponent c = new ConcreteComponent ();

2 IDecoratorOperations d31 = new Decorator3(new Decorator1(c);

3 IDecoratorOperations_Extended d431 = new Decorator4(d31);

4 IDecoratorOperations_Extended d2431 = new Decorator2_Adapted(d431);

5 d431.f3(); d431.f4(); d431.f1(); d2431.f2(); d2431.f4();

MIXDECORATOR: AN ENHANCED VERSION OF DECORATOR PATTERN 5

Figure 3. The classes that need to be defined when new decorations are intended to be added.

The code produces the correct execution of all the methods.
The set of the possible added responsibilities could be extended easily.

3.3. Implementation. The structure of the pattern as emphasized in Figure 2 could be easily implemented in any
object-oriented language.

In order to allow new decoration extensions, there is an implementation requirement defined by the possibility
of adding new methods to an interface (to add a set of methods to IDecoratorOperations interface), and also to
provide a basic implementation for them.

Classically, this is done based on multiple inheritance. So, a language as C++ or any other that allows
multiple inheritance lead to a simple implementation, where IDecoratorOperations Extended is defined as an
abstract class. Other mechanisms – specific to the target language – could be investigated.

An example is provided by the Java extended interfaces (or virtual extension methods- as they are also called).
They are based on defining default implementations inside interfaces (the implementation details for our case
were given in the previous section). It is also considered that Java 8 interfaces can be exploited to introduce a
trait-oriented programming style [BMN14].

Also, the implementation of the MixDecorator could be simplified by considering only IDecoratorOperations

without ConcreteDecoratorBase. In Java 8 this would be an interface with default methods (with the same
definitions as they are now in ConcreteDecoratorBase).

In C# the pattern could be implemented based on extension methods. Using “extension methods” we are
able to add new methods to a class after the complete definition of the class [CS]. They allow the extension of
an existing type with new functionality, without having to sub-class or recompile the old type. The mechanism
allows only static binding and so the methods that could be added to a class cannot be declared virtual. In
fact, an extension method is a static method defined in a non-generic static class, and can be invoked using an
instance method syntax.

If we use them in C#, we may add a static class Decorator Extension where the methods f4(), f5() are
defined as extension methods. The class Decorator Extension provides extension for IDecoratorOperations:

1 public static class Decorator_Extension{

2 public static void f4(this IDecoratorOperations db) {

3 try

4 { ((Decorator4)db).f4(); }

5 catch (InvalidCastException e)

6 { try { ((IDecoratorOperations)db.getBase ()).f4(); }

7 catch (InvalidCastException ee)

8 { throw new UnSupportedFunctionalityException("f4");} }

9 }

10 ... }

6 VIRGINIA NICULESCU, BABEŞ-BOLYAI UNIVERSITY, CLUJ-NAPOCA

The code defines a recursion that it’s stopped either if the current decoration defines the invoked method or
by throwing an exception if no decoration that defines such a method was found.

In Java, the verification of the first case is implicitly done based on polymorphic call.
With this C# solution, no adaptation of the first decorator classes is needed.
Next, we show an example of combining decorations in C#; it produces correct calls:

1 IComponent c = new ConcreteComponent ();

2 IDecoratorOperations d = new Decorator 2(new Decorator5(new Decorator1(new Decorator4(c))));

3 d.f1(0; d.f2(); d.f4(); d.f5();

Applications. The applications that were designed based on the classical Decorator, and which define new re-
sponsibilities for the decorated objects, could be improved by using MixDecorator.

The definition of Java IO streams is such an example. If a method of type getBase() would be provided in
FilterInputStream then MixDecorator could be used instead of simple Decorator, and so we could eliminate the
constraints of the current implementation.

Many other similar situations could be found, where decorations imply also adding new operations.

3.4. Consequences.
• The linear combination of the decorations is hidden. The final object could be seen as an object with

a set of additional responsibilities. This way we may consider that we extend the type of an object (by
extending the set of messages that could be sent to it) without defining new classes.

• The component and its decorators are decoupled. The author of the component does not need to do
anything special for it to be decorated.

• Added behavior could be used in any combination, without any additional operation: such as withdrawing
decorations.

• Clients can choose what capabilities they want by sending messages to the object that has the appropriate
decoration.

• It is not necessary to create different decorated objects in order to choose a combination of capabilities,
even if the decorators‘ concrete interfaces are not the same as the subject interface (but they are derived
from it).

• As for classical decorators, objects do not pay for capabilities they do not use. Thus we have efficiency
and generality at the same time.

Negative Consequences.
• If the Decorator pattern requires virtually no anticipation, in the case of MixDecorator some anticipation

is required in the sense of knowing the initial set of decorations that is intended to be provided. The
definition of IDecoratorOperations implies an enumeration of all new interface responsibility that is going
to be defined through decorations. Still, even if initially just a small set of decorations are defined, it
could be extended with minimum adaptation (see section 3.2) by defining new decorations.

• The addition of new decorations that could be combined to the previous ones imposes an implementation
constraint which results from the following requirement – to allow adding new methods to an interface
(to add a set of methods to IDecoratorOperations), and to provide a basic implementation for these
methods.This could be directly implemented in languages that accept multiple inheritance – as C++, or
using a surrogate of it, as that provided by the Java extended interfaces, or other mechanisms specific to
the implementation language – as C# extension methods.

Related patterns. If the component class is heavyweight, with lots of data or methods, it may make decorators
too costly. It is considered that instead of changing the skin of the object, we can change the guts, via the
Strategy pattern.
Strategies do not have to conform to the subject’s interface but the same is for MixDecorator, too. In the Strategy
pattern, the main component is aware of the existence of strategies, where that is not needed with decorators.
Also an important advantage of MixDecorator is the fact that allows behaviors mixing, when using Strategy we
can just choose one strategy/behavior or another.

4. Example – Framework for Collection Data Structures with Features

We proposed in [NL13] a design based on Decorator pattern for frameworks of collection data structures. The
implementation and testing of the proposed design has been done in Java. The analysis showed that Decorator
has several drawbacks if it is applied in the classical way. The further analysis leaded to the MixDecorator
pattern.

MIXDECORATOR: AN ENHANCED VERSION OF DECORATOR PATTERN 7

Figure 4. Decorator based design of the collections. SpecializedContainer is the Decorator
class, and IStorage defines the general component. Concrete storages could be defined: Array,

LinkedStorage, etc.

4.1. General ideas. We consider that there are two general and important aspects related to collections [Nic11]:

(1) storage capability – the elements that are grouped together have to be stored into the memory in an
accessible way; usually the term container emphasizes more this aspect;

(2) specific behavior – the operations that are allowed for a specific type of container have different specifi-
cations; usually the term collection is chosen to emphasize this aspect.

Storage capability. The first aspect is directly connected to the data structures used for storing the elements. For
storage, we may use a continuous block of memory or a set of discontinues blocks of memory (nodes) connected
one to another using links (references). Each container has to be stored in the memory, in a way that allows
elements to be added, removed, retrieved, and searched. The storage capability of a collection could be considered
as a basic, compulsory, implicit feature, that characterizes any collection[Nic11].

Specialized behavior – specialized containers. The set of operations that could be applied to a container may be
different, but also their specification may be different from one collection type to another. In order to emphasize
these differences from behavior point of view, we may identify a set of features that could be applied to a
container.

So, our approach is not based on abstract data types, but on specific behaviors defined with features. This was
inspired by feature-oriented programming [BG97, CE00]. The design was leaded by the following main principle:

¡Anytime a feature could be added to a collection and then could be removed.¿
We considered a feature as being a distinctive property that characterizes the behavior of a collection – an

operation or a set of operations with defined arguments, together with their semantic, expressed by a clear
specification. It is something that fundamentally characterizes the collection behavior [NL13].

Starting from a concrete storage structure we may create different collection types, by adding different behav-
iors.

¡A behaviour is defined as being formed of a combination of basic features.¿
For example, a set is characterized only by the fact there are no duplicate elements in the container. The

feature Unique defines the operation add with the same argument list as in the basic storage type, but changes
the postcondition of the operation, by assuring the fact that the argument is added only if its value is not yet
present in the container. How these elements are stored, is not a fact that characterizes the set.

Sequence assures the fact that the elements are in a particular linear order; the implementation translates this
abstract specification into a concrete behavior by offering a bidirectional read and write iterator.

Ranked is a feature that specifies an added behavior that allows the access to the elements based on their rank.
A rank of an element in a collection is equal to the rank of it in the traversal executed by the implicit iterator.
So, this could be added not only to sequences.

Stacks and queues specify particular behaviors, and because of that, they could be seen as features. They are
specializations of sequences.

Many other features could be defined, and this represents the main modality of extending the framework.

4.2. Features classification. The features could be classified depending on how they change the behavior of
the container:

• features that preserve the default container operations, but changes their specifications; ex. Unique

(symmetric features);
• features that add new operations; ex. Ranked, Sequence;
• features that restrain the set of operations; ex. UnmodifiableStorage;
• features that restrain the implicit set of operations, but add some other new operations; ex. Stack, Queue

– they eliminate remove(elem), and introduce extract();
We may identify some restrictions; for example there are features, which could not be added after we have

already have some elements into the support container. All these features are specializations of EmptyStorage

feature. Generally, between features we may establish specialization/generalization relationships.

8 VIRGINIA NICULESCU, BABEŞ-BOLYAI UNIVERSITY, CLUJ-NAPOCA

Figure 5. Different features that could be defined for a collection. The features are defined as
decoration classes. SpecializedContainer is the base decorator class, which is derived from Storage

but also wraps inside a Storage field.

Figure 6. The design adaptation to MixDecorator.

Figure 7. The IStorage interface and the methods of the class Storage .

The first design of the framework was based on Decorator pattern and this forced us to classify the features into
levels and impose an order in the possible addition of the features based on these levels. Ranked, for example, adds
operations like getElem(index), setElem(val,index) , getRank(val), remove(index). Using Decorator based
design, this should be the last added feature in order to allow these operations to be visible and accessible.
Figure 5 shows some decoration classes as they were defined in the Decorator based design.

But these constraints are eliminated if MixDecorator pattern is used. Using this new design we can also add
Unique after Ranked and all additional operations brought by Ranked are still available. MixDecorator assures
the fact that all the additional operations are accessible even if the decoration that defined them is not the last.

The modification that we had to apply to the first design was to add a new decorator interface IFeaturesOperations
derived from IStorage and a new class FeaturesOperations derived from SpecializedContainer, which defines all
the additional operations that the features introduce. The concrete decorations features are derived now from
the class FeaturesOperations, and not directly from SpecializedContainer (Figure 6).
4.3. Framework design in more detail. We have considered that: memory representation, iterability, and
searchability are implicit properties of each collection type of the framework. Based on these, the IStorage

interface is defined as is shown in Figure 7.
The class SpecializedContainer defines template methods for the methods of IStorage. These template

methods call some proxy methods (initially declared in Storage<T> – Figure 4) that precede and succeed the calls
of the actual storage methods. Some dependences could be defined on them (e.g. prev add() and post add()

are used by all operations that implies insertion or setting of new values). When we work with a container with
several decorations, the proxy methods of the decoration are called in a chain.

The symmetric features modify the specifications of some basic storage operations. Prefix proxy operations
could modify the preconditions, and suffix proxy operations could modify the postconditions.

A decoration that corresponds to a feature that restrains the basic set of features, implements prefix proxy
operations that block the execution of the operations that have to be excluded.

MIXDECORATOR: AN ENHANCED VERSION OF DECORATOR PATTERN 9

For example, Unique defines a decoration that assures that no duplicates are included into the container. More
precisely it defines the method prev add in such a way that if the element is already into the container, the add
operation of the storage support is no longer called.

Also, since for the collections, the decorations are dependent on each other, the proxy operations are called also
in the recursive process specific to MixDecorator – the process of finding the concrete definition of the method.
When methods corresponding to features are defined in the decorator class, besides forwarding the call to the
base, prefix and suffix operations are called, too.

4.4. Framework usage. As we have specified before, the framework allows the creation of new collections by
adding the characteristic features. We will give few examples.
If the user needs a stack of integers, with unique value elements he/she may use the following code:

1 FeaturesOperations <Integer > stack = new Unique(new Stack <Integer >(new Array <Integer >()));

2 // FeaturesOperations <Integer > stack = new Stack <Integer >(new Unique(

3 // new Array <Integer >())); equivalent

4 stack.add(new Integer (2));

5 Integer i = stack.extract ();

If after using the stack for the initial purpose, based on the LIFO principle, the stack is not empty, the same
storage could be used as a simple collection:

1 IStorage <Integer > support = stack.getStorage ();

If for elements which are remained in the collection we would like to have direct access based on the rank, we
may add Ranked feature:

1 Ranked <Integer > rank_coll = new Ranked <Integer > (support);

2 for (int i =0 ; i<rank_coll.size (); i++){

3 System.out.println("the next element in the stack"+ rank_coll.getElem(i));

5. Conclusions and Future Work

The proposed pattern – MixDecorator – is similar to Decorator pattern in the sense that allows functionality
extension, but it brings an important advantage by allowing new responsibilities to be added. It treats the
situations when we want to add new responsibilities, more concretely, when we want to enlarge the set of
messages that could be sent to an object (so we may consider that we dynamically modify the type of an object).
Different combinations of these messages could be used, and all the responsibilities are directly accesible.

Other important advantages are provided:
• IComponent is independent of any decoration declaration, so already defined concrete classes could be

used;
• it allows a multi-stage development, and so extensions are possible and they benefit of the same advantages

as the first defined set of decorations.
The implementation constraint of the solution that allows future decoration extensions is related to the fact

that we have to be able to add a set of operations to an interface and also to provide a basic implementation
for the corresponding methods. This could be achieved by using multiple inheritance, a surrogate of it, as that
provided by the Java extended interfaces, or other mechanisms specific to the implementation language – as C#
extension methods.

As the example with the data structures emphasizes, the applicability of the MixDecoration pattern is clearly
defined and brings important advantages over the classical one. The pattern has been used in order to allow the
creation of new collections based on dynamic composition of the features that characterize the corresponding
data structures. In this way we may add or remove features dynamically. The fact that only linear combinations
of features are allowed could be seen as a disadvantage, but since the classical version of Decorator has been
replaced with MixDecorator this disadvantage is hidden: the features with changed interface are visible even
if they are not added as a final decoration. Here the advantage of using the presented pattern is very clear.
Without it the framework design and usage would have been much more difficult.

Other, more classical, examples could be given (e.g IO streams or graphical windows).
Since MixDecorator applicability is related to the possibility of adding new functionalities, a comparison with

mixins could be done: MixIn programming is a style of software development where units of functionality are
created in a class and then mixed in with other classes [BC90]. A mixin class could be considered as a parent
class that is inherited from - but this is not done in order to obtain a specialization. Typically, the mixin will
export services to a child class, but no semantics will be implied about the child “being a kind of” the parent.

The main differences between MixDecorator and Mixins are based on the fact that with MixDecorator we want
to add functionality to objects, not to create new classes that contains a combination of methods from other

10 VIRGINIA NICULESCU, BABEŞ-BOLYAI UNIVERSITY, CLUJ-NAPOCA

classes. With MixDecorator we may extend functionality (change behavior and add new responsibilities) of an
object, and this new functionality could be added and removed dynamically.

As further work we will try to investigate more examples where using MixDecorator could bring important
advantages, and also to investigate its variants.

Acknowledgement The author is grateful to EuroPLoP shepherd Eden Burton, and to the workshop par-
ticipants for their constructive and helpful feedback and comments.

References

[BG97] [BG97] D. Batory,B.J. Geraci:Composition Validation and Subjectivity in GenVoca Generators. IEEE Trans. Software Engi-
neering’97.

[BC90] [BC90] G. Bracha, W. Cook. 1990. Mixin-based inheritance. In Proceedings of the European conference on object-oriented
programming on Object-oriented programming systems, languages, and applications (OOPSLA/ECOOP ’90). ACM, New York,
NY, USA, 303-311.

[BMN14] [BMN14] V.Bono, E. Mensa, M. Naddeo. Trait-oriented Programming in Java 8. PPPJ’14: International Conference on
Principles and Practices of Programming on the Java Platforms., Sep 2014, Cracow, Poland.

[CE00] [CE00] K. Czarnecki, U. Eisenecker: Generative Programming. Addison Wesley, 2000.
[GHJV94] [GHJV94] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of Reusable Object Oriented Software,
Addison-Wesley, 1994.

[Nic11] [Nic11] V. Niculescu,: Storage Independence in Data Structures Implementation, Studia Universitatis ”Babes-Bolyai”, Infor-
matica, Special Issue, LVI(3), pp. 21-26, 2011.

[NL13] [NL13] V. Niculescu, D. Lupsa: A Decorator based Design for Collections.Proceedings of the International Conference on
Knowledge Engineering, Principles and Techniques, KEPT2013, Cluj-Napoca (Romania), July 5-7, 2013, pp 54-64.

[ST04] [ST04] A. Shalloway, J. R. Trott. Design Patterns Explained: A New Perspective on Object-Oriented Design. Addison Wesley,
2004

[Java8] [Java8] Java SE 8: Implementing Default Methods in Interfaces
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/ JavaSE8DefaultMethods/JavaSE8DefaultMethods.html

[CS] [CS]Extension Methods (C# Programming Guide) https://msdn.microsoft.com/en-us//library/bb383977.aspx

