The 2nd International Workshop on Education through Advanced Software Engineering and Artificial Intelligence

Agile and Cyclic Learning in Teaching Parallel and Distributed Computing

Virginia Niculescu & Adrian Sterca & Darius Bufnea
Babeș-Bolyai University, Romania
Motivation and Goal

- To improve the teaching process of Parallel and Distributed Computing
- To use Agile and Cyclic Learning
- To evaluate the pace in which Agile and Cyclic Learning enforces the best knowledge transfer of PDC concepts
Research Questions

RQ1 • What is the pace in which cyclic learning enforces the best knowledge transfer?

RQ2 • In which measure applying agile methods helps the knowledge transfer?

RQ3 • To which extent should we introduce PDC topics at the undergraduate level?
Learning Methodologies

Cyclic Learning

- Remember
- Understand
- Apply
- Analyse
- Evaluate
- Create

Bloom taxonomy

- Remembering
- Understanding
- Applying
- Analysing
- Evaluating
- Creating
Learning methodologies

Agile Learning

<table>
<thead>
<tr>
<th>Agile Principles</th>
<th>Learning Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Working in teams</td>
</tr>
<tr>
<td></td>
<td>Collaborative analysis of the results</td>
</tr>
<tr>
<td></td>
<td>- students evaluate other students,</td>
</tr>
<tr>
<td></td>
<td>- group analysis,</td>
</tr>
<tr>
<td></td>
<td>Enhanced student-professor interaction</td>
</tr>
<tr>
<td>P2</td>
<td>Orientation on practical skills</td>
</tr>
<tr>
<td></td>
<td>Allow software development based on</td>
</tr>
<tr>
<td></td>
<td>frameworks/APIs/components that are</td>
</tr>
<tr>
<td></td>
<td>not yet fully understood,</td>
</tr>
<tr>
<td></td>
<td>but could provide fast practical</td>
</tr>
<tr>
<td></td>
<td>results (products)</td>
</tr>
<tr>
<td>P3</td>
<td>Responding to change</td>
</tr>
<tr>
<td></td>
<td>over following a plan</td>
</tr>
<tr>
<td></td>
<td>- Collaborate with students</td>
</tr>
<tr>
<td></td>
<td>- Change/adapt the requirements</td>
</tr>
<tr>
<td></td>
<td>if needed</td>
</tr>
<tr>
<td>P4</td>
<td>Customer collaboration</td>
</tr>
<tr>
<td></td>
<td>over contract negotiation</td>
</tr>
<tr>
<td></td>
<td>Allow course adaptation and changes</td>
</tr>
<tr>
<td></td>
<td>after the syllabus delivery</td>
</tr>
<tr>
<td></td>
<td>(e.g. change the order in which</td>
</tr>
<tr>
<td></td>
<td>the subjects are presented)</td>
</tr>
</tbody>
</table>

EASEAI - 2020
Courses addressing PDC topics

cyclic learning

- one item is introduced in successive iterations
- more than one iteration is needed in order to attain the highest level of knowledge
- students return to previously learned concepts:
 - with regularity
 - in different contexts
 each time they extend and deepen their knowledge
Agile Learning use-cases

APM -> P2 principle
- working with executors, tasks, and futures without explaining before the associated concepts
- use Java parallel streams without discussing about the mechanisms through which the parallelism is achieved in this case

WP -> P1 and P3 principles
- students team up in group of 3 or 4 in order to deliver their assignments.
- after each sprint -> double evaluation:
 - an individual evaluation of student’s knowledge
 - a group assessment

PDP -> P1, P3 and P4 principles
- (P4) MPI (Message Passing Interface) presentation re-scheduling based on the students’ feedback (to increase interest)
- (P1) CUDA programming practical work was set to be done in teams (to overcome the difficulties)
- (P3) A project-based learning alternative evaluation (challenge problems)
Analysis

- **Questionnaire Based Investigation**
 - student self evaluation – 6 levels (0 - Not known ↔ 5 – assessment)
 - student informal feedback

- **Grade Analysis**
 - Laboratory works
 - Theoretical written exam

- **where/when**
 - the end of the PDP course which is the last in the intercorrelated courses chain
Questionnaires

Informal qualitative feedback:
- Team work very much appreciated! (web progr., and others...!)
- CUDA enjoys a large interest from students, but also MPI and OpenMP.
- MPI considered helpful for deepening understanding of processes.
- Most of the students expressed the fact that the PDC topics are difficult to understand.
- Few others expressed their opinion that there is unnecessary repetition of some items.
Grade analysis

Fundamental knowledge
- written exam

Agile learning:
- CUDA – working in teams
- MPI course – presentation order changed

Cyclic learning:
- Client-Server – still considered difficult
Conclusions

Response to RQ1 – Cyclic learning
- proved to be an effective and efficient method to be applied for teaching
- the concepts and mechanisms of PDC are not very easy to be completely understood and assimilated (one course wouldn’t be enough).

Response to RQ2 - Agile learning
- improve the knowledge transfer
- increase of the students’ interest

Response to RQ3 – Level of knowledge
- we cannot increase very much the pace of introducing PDC topics at the undergraduate level since we have to assure the fact that the fundamentals are well understood and assimilated
- the elective courses could enlarge this knowledge
Thank you for your attention!

Niculescu Virginia: vniculescu@cs.ubbcluj.ro virginia.niculescu@ubbcluj.ro

Darius Bufnea: bufny@cs.ubbcluj.ro darius.bufnea@ubbcluj.ro

Adrian Sterca: forest@cs.ubbcluj.ro Adrian.sterca@ubbcluj.ro