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An extension of Krasnoselskii’s cone fixed
point theorem for a sum of two operators
and applications to nonlinear boundary value
problems
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Abstract. The purpose of this work is to establish a new generalized form of the
Krasnoselskii type compression-expansion fixed point theorem for a sum of an
expansive operator and a completely continuous one. Applications to three non-
linear boundary value problems associated to second order differential equations
of coincidence type are included to illustrate the main results.
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1. Introduction

One of the main results in fixed point theory is the cone expansion and com-
pression theorem proved by Krasnoselskii in 1964 (see, e.g., [10, 11]). It represents
a powerful existence tool in studying operator equations and showing existence of
positive solutions to various boundary value problems. By this result, a solution is
localized in a conical shell of a normed linear space. This theorem has been recently
deeply improved in various directions; see [1, 2, 3, 6, 9, 12, 13, 14] and references
therein. A vector version of Krasnoselskii’s fixed point theorem in cones has been
given in [4, 15, 16]. In practice, the vector version allows the nonlinear term of a
system to have different behaviors both in components and in variables.
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In this paper, we first establish some user-friendly versions of Krasnoselskii type
compression-expansion fixed point theorem for a sum of an expansive operator and a
completely continuous one. A vector version of the main result is also given.
Next, using the main obtained fixed-point result, we study the existence of positive
solutions for three nonlinear boundary value problems associated to second order
differential equations and systems of coincidence type equations.

Let X be a normed linear space with norm ‖.‖, and let P ⊂ X be a wedge, i.e.,
a closed convex subset of X, P 6= {0} with λP ⊂ P 6= {0} for every λ ∈ R+. If in
addition P ∩ (−P) = {0}, then P is a cone, and we say that x < y if and only if
y − x ∈ P \ {0}. For two numbers 0 < r < R, we define the conical shell Pr,R by
Pr,R := {x ∈ P : r ≤ ‖x‖ ≤ R}.

Let N : D ⊂ X → X be a continuous operator. The operator N is said to be
bounded if it maps bounded sets into bounded sets, completely continuous if it maps
bounded sets into relatively compact sets, and compact if the set N (D) is relatively
compact.

Consider the operator equation

Nx = x,

where N is a given nonlinear map acting in P.

Theorem 1.1. (Krasnoselskii’s compression-expansion fixed point theorem). Let α, β >
0, α 6= β, r := min{α, β} and R := max{α, β}. Assume that N : Pr,R → P is
a compact map and there exists p ∈ P \ {0} such that the following conditions are
satisfied:

Nx 6= λx for ‖x‖ = α and λ > 1;
Nx+ µp 6= x for ‖x‖ = β and µ > 0.

(1.1)

Then N has a fixed point x in P with r ≤ ‖x‖ ≤ R.

Remark 1.2. If β < α, then the conditions (1.1) represents a compression property of
N upon the conical shell Pr,R, while if β > α, then the conditions (1.1) expresses an
expansion property of N upon Pr,R.

Consider a system of two operator equations{
N1(x1, x2) = x1
N2(x1, x2) = x2,

where N1, N2 act from P × P to P.

Theorem 1.3. ([16, Theorem 2.1]). Let (X, ‖.‖) be a normed linear space; P1, P2 ⊂ X
two wedges; P := P1×P2; αi, βi > 0 with αi 6= βi for i = 1, 2 and let ri = min{αi, βi},
Ri = max{αi, βi} for i = 1, 2. Assume that N : Pr,R = (P1)r1,R1

× (P2)r2,R2
→

P, N = (N1, N2), is a compact map and there exist pi ∈ Pi \ {0}, i = 1, 2 such that
for each i ∈ {1, 2} the following conditions are satisfied in Pr,R:

Nix 6= λxi for ‖xi‖ = αi and λ > 1;
Nix+ µpi 6= xi for ‖xi‖ = βi and µ > 0.

(1.2)

Then N has a fixed point x = (x1, x2) in P such that ri ≤ ‖xi‖ ≤ Ri for i = 1, 2.
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A mapping T : D ⊂ Y → Y, where (Y, d) is a metric space, is said to be expansive
if there exists a constant h > 1 such that

d(Tx, Ty) ≥ h d(x, y) for all x, y ∈ D.
To establish our results, we need the following technical lemma concerning expansive
mappings.

Lemma 1.4. Let (X, ‖.‖) be a linear normed space and D ⊂ X. Assume that the
mapping T : D → X is expansive with constant h > 1. Then the mapping T : D →
T (D) is invertible and

‖T−1x− T−1y‖ ≤ 1

h
‖x− y‖, ∀x, y ∈ T (D).

2. Main results

Theorem 2.1. Let K be a subset of a Banach space X and P ⊂ X a wedge. Assume
that T : K → X is an expansive mapping with constant h > 1 and F : K → X is a
mapping such that I − F : K → P is completely continuous one with P ⊂ T (K). Let
α, β > 0, α 6= β, p ∈ P \ {0}, r := min{α, β} and R := max{α, β}.
Suppose that the following conditions are satisfied:

x 6= λTx+ Fx for x ∈ T−1(P), ‖Tx‖ = α and λ > 1. (2.1)

x 6= Tx+ Fx− µp for x ∈ T−1(P), ‖Tx‖ = β and µ > 0. (2.2)

Then T + F has a fixed point x in T−1(P) such that r ≤ ‖Tx‖ ≤ R.

Proof. By Lemma 1.4, the operator T−1 : T (K) → K is a 1
h -contraction. Then the

operator N defined by

N : P → P
y 7→ Ny = T−1y − FT−1y

is well defined and it is completely continuous.
Claim 1. We show that Condition (2.1) implies that

Ny 6= λy for ‖y‖ = α and λ > 1.

On the contrary, assume the existence of λ0 > 1 and y1 ∈ P with ‖y1‖ = α such that

Ny1 = λ0y1.

Let x1 := T−1y1. Then
x1 − Fx1 = λ0Tx1.

The hypotheses y1 ∈ P, ‖y1‖ = α imply that x1 ∈ T−1(P) and ‖Tx1‖ = α. Which
lead to a contradiction with Condition (2.1).
Claim 2. We show that Condition (2.2) implies that

Ny + µp 6= y for ‖y‖ = β and µ > 0.

On the contrary, assume the existence of µ0 > 1 and y2 ∈ P with ‖y2‖ = β such that

y2 −Ny2 = µ0p.



426 Lyna Benzenati and Karima Mebarki

Let x2 := T−1y2. Then
x2 = Tx2 + Fx2 − µ0p.

The hypotheses y2 ∈ P, ‖y2‖ = β imply that x2 ∈ T−1(P) and ‖Tx2‖ = β. Which
lead to a contradiction with Condition (2.2).

Consequently, by Theorem 1.1, the operator N has a fixed point y ∈ P such that
r ≤ ‖y‖ ≤ R. That is

T−1y − FT−1y = y.

Let x := T−1y. Then x ∈ T−1(P), it is a fixed point of T + F, and

r ≤ ‖Tx‖ ≤ R. �

If in addition P is a cone, as a consequence of Theorem 2.1, we derive the
following cone compression and expansion fixed point theorems, the first in terms of
the partial order relation induced by P and the second of norm type.

Corollary 2.2. Let K be a subset of a Banach space X and P ⊂ X a cone. Assume
that T : K → X is an expansive mapping with constant h > 1 and F : K → X is a
mapping such that I − F : K → P is completely continuous one with P ⊂ T (K). Let
α, β > 0, α 6= β, r := min{α, β} and R := max{α, β}.
Suppose that the following conditions are satisfied:

x ≯ Tx+ Fx for x ∈ T−1(P) with ‖Tx‖ = α. (2.3)

x ≮ Tx+ Fx for x ∈ T−1(P) with ‖Tx‖ = β. (2.4)

Then T + F has a fixed point x in T−1(P) such that r ≤ ‖Tx‖ ≤ R.

Proof. The conditions (2.1) and (2.2) of Theorem 2.1 are satisfied. Indeed, assume
the contrary of Condition (2.1). Then there exist λ0 > 1 and x0 ∈ T−1(P) with
‖Tx0‖ = α such that

x0 = λ0Tx0 + Fx0.

Thus, Tx0 = 1
λ0

(x0 − Fx0) < x0 − Fx0, that is x0 > Tx0 + Fx0, which contradicts

(2.3).
Assume the contrary of Condition (2.2). Then there exist p ∈ P \ {0}, µ0 > 0 and
x1 ∈ T−1(P) with ‖Tx1‖ = β such that

x1 = Tx1 + Fx1 − µ0p.

Since µ0p ∈ P \ {0}, we obtain

x1 < Tx1 + Fx1,

which contradicts (2.4). �

Corollary 2.3. Let K be a subset of a Banach space X and P ⊂ X a cone. Assume
that T : K → X is an expansive mapping with constant h > 1 and F : K → X is a
mapping such that I − F : K → P is completely continuous one with P ⊂ T (K). Let
α, β > 0, α 6= β, r := min{α, β} and R := max{α, β}.
Suppose that the following conditions are satisfied:

‖x− Fx‖ ≤ ‖Tx‖ for x ∈ T−1(P) with ‖Tx‖ = α. (2.5)

‖x− Fx‖ ≥ ‖Tx‖ for x ∈ T−1(P) with ‖Tx‖ = β. (2.6)
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Then T + F has a fixed point x in T−1(P) such that r ≤ ‖Tx‖ ≤ R.

Proof. The conditions (2.1) and (2.2) of Theorem 2.1 are satisfied. Indeed, assume
the contrary of Condition (2.1). Then there exist λ0 > 1 and x0 ∈ T−1(P) with
‖Tx0‖ = α such that

x0 = λ0Tx0 + Fx0.

Then x0 − Fx0 = λ0Tx0, that is

‖x0 − Fx0‖ = λ0‖Tx0‖ > ‖Tx0‖,
which contradicts (2.5).
Assume the contrary of Condition (2.2). Then there exist p ∈ P \ {0}, µ0 > 0 and
x1 ∈ T−1(P) with ‖Tx1‖ = β such that

x1 = Tx1 + Fx1 − µ0p.

x1 − Fx1 = Tx1 − µ0p that is

‖x1 − Fx1‖ < ‖Tx1‖,
which contradicts (2.6). �

The vector version of Theorem 2.1 is presented in the following theorem. In
what follows, we shall consider two Banach spaces (X1, ‖.‖1), (X2, ‖.‖2); two wedges
P1 ⊂ X1,P2 ⊂ X2, the product space X := X1 × X2, the corresponding wedge
P := P1 × P2 of X. For αi, βi > 0 with αi 6= βi, let α = (α1, α2) , β = (β1, β2) ,
ri = min {αi, βi} , Ri = max {αi, βi} for i = 1, 2, and r = (r1, r2), R = (R1, R2).

Theorem 2.4. Let K := K1 ×K2 be a subset of X.
Assume that Ti : Ki ⊂ Xi → Xi be an expansive mapping with constant hi > 1 and
Fi : K → Xi is a mapping such that Ii−Fi : K → Xi be a completely continuous one
with Pi ⊂ T (Ki), i = 1, 2 and xi − Fi(x1, x2) ∈ Pi for xi ∈ Ki, i = 1, 2.
Suppose that there exist pi ∈ Pi \ {0}, i = 1, 2 such that for each i ∈ {1, 2} the
following conditions are satisfied:

xi 6= λTixi + Fix for xi ∈ T−1i (Pi), ‖Tixi‖ = αi and λ > 1. (2.7)

xi 6= Tixi + Fix− µpi for xi ∈ T−1i (Pi), ‖Tixi‖ = βi and µ > 0. (2.8)

Then T +F = (T1 +F1, T2 +F2) has a fixed point x = (x1, x2) in T−11 (P1)×T−12 (P2)
such that

ri ≤ ‖Tixi‖ ≤ Ri for i = 1, 2.

Proof. By Lemma 1.4, for i ∈ {1, 2} the operator T−1i : T (Ki) → Ki is an 1
hi

-
contraction. Then the operator N defined by

N : P → P
y 7→ N(y1, y2) = (N1(y1, y2), N2(y1, y2))

where  N1(y1, y2) = T−11 y1 − F1(T−11 y1, T
−1
2 y2)

N2(y1, y2) = T−12 y2 − F2(T−11 y1, T
−1
2 y2)

is well defined and it is completely continuous.
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Claim 1. We show that Condition (2.7) implies that

Niy 6= λyi for ‖yi‖ = αi and λ > 1 for i = 1, 2.

On the contrary, assume the existence of λ0 > 1 and , y0 = (y01 , y02) ∈ P with
‖y0i ‖ = αi such that

N1y
0 = λ0y

0
1 or N2y

0 = λ0y
0
2 .

Let x0i := T−1i y0i for i = 1, 2. Then, we obtain

x01 − F1(x01, x
0
2) = λ0T1x

0
1

or
x02 − F1(x01, x

0
2) = λ0T2x

0
2.

The hypotheses y0 ∈ P, ‖y0i ‖ = αi imply that x0i ∈ T−1i (Pi) for i = 1, 2 with
‖Tix0i ‖ = αi, which lead to a contradiction with Condition (2.7).
Claim 2. We show that condition (2.8) implies that

Niy + µpi 6= yi for ‖yi‖ = βi and µ > 0 for i = 1, 2.

On the contrary, assume the existence of µ0 > 0 and z0 = (z01 , z
0
2) ∈ P with ‖z0i ‖ = βi

such that
z01 −N1z

0 = µ0p1 or z02 −N2z
0 = µ0p2.

Let t0i := T−1i z0i for i = 1, 2. Then, we obtain

t01 = T1t
0
1 + F1(t01, t

0
2)− µ0p1

or
t02 = T2t

0
2 + F2(t01, t

0
2)− µ0p2.

The hypotheses z0 ∈ P, ‖z0i ‖ = βi imply that t0i ∈ T
−1
i (Pi) for i = 1, 2 with ‖Tit0i ‖ =

βi, which lead to a contradiction with condition (2.8). Our result then follows from
Theorem 1.3. �

Remark 2.5. Since the compact operator N in Theorems 1.1 and 1.3 may be gener-
alized to a strict-set contraction, the conclusion of Theorems 2.1 (and its Corollar-
ies) and Theorems 2.4 can be extended to the case of a `-set contraction mapping
I − F (0 < ` < h) with respect to some measure of noncompactness (see [5]).

3. Applications

3.1. Example 1

Consider the following nonlinear boundary value problem −
d2

dt2 f(t, x(t)) = g(t)h(x(t)), 0 < t < 1

x(0) = x(1) = 0,

(3.1)

where f : [0, 1]× R+ → R+ is continuous function defined by:

f(t, u) = u3 + a(t)u, a ∈ C2([0, 1],R+), with min
t∈[0,1]

a(t) > 1,

g ∈ C([0, 1],R+) and h : R+ → R+ is continuous increasing function.
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Problem (3.1) is equivalent to the integral equation

f(t, x(t)) =

1∫
0

G(t, s)g(s)h(x(s))ds, t ∈ [0, 1], (3.2)

where G is the corresponding Green’s function defined in [0, 1]× [0, 1] by:

G(t, s) =

{
t(1− s), if 0 ≤ t ≤ s ≤ 1,
s(1− t), if 0 ≤ s ≤ t ≤ 1.

(3.3)

The Green function satisfies the following properties:

0 ≤ G(t, s) ≤ G(s, s), ∀ (t, s) ∈ [0, 1]× [0, 1],
G(t, s) ≥ 1

4G(s, s), ∀(t, s) ∈ [ 14 ,
3
4 ]× [0, 1].∫ 1

0
G(t, s) ds ≤ 1

8 , ∀ t ∈ [0, 1].∫ 3
4
1
4

G(t, s) ds ≥ 1
16 , ∀ t ∈ [ 14 ,

3
4 ].

We will set
A := max

t∈[0,1]

∫ 1

0
G(t, s)g(s) ds,

B := 1
4

3
4∫
1
4

G(t0, s)g(s) ds, for some t0 ∈ [0, 1].

We let

(C0) 1 < a0 := min
t∈[0,1]

a(t) ≤ a0 := max
t∈[0,1]

a(t).

Assume that the following assumptions hold for some positive reals α, β with α 6= β:

(C1) Ah
(

1
a0
α
)
≤ α,

(C2) Bh
(
1
4β0
)
≥ β, where β0 = β0(β) > 0 such that β3

0 + a0β0 = β.

Remark 3.1. From the properties of Green’s function, we get

max
t∈[0,1]

∫ 1

0

G(t, s)g(s) ds ≤ 1

8
max
t∈[0,1]

g(t)

and

min
t∈[ 14 ,

3
4 ]

∫ 3
4

1
4

G(t, s)g(s) ds ≥ 1

16
min
t∈[ 14 ,

3
4 ]
g(t).

Then, for the conditions (C1) and (C2) to be satisfied it is enough that constants α
and β satisfy

1

8
max
t∈[0,1]

g(t)h

(
1

a0
α

)
≤ α and

1

16
min

t∈∈[ 14 ,
3
4 ]
g(t)h

(
1

4
β0

)
≥ β.

Now we state our main result
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Theorem 3.2. Let Assumptions (C0)-(C2) be satisfied. Then the nonlinear boundary
value problem has a solution x which belongs to C([0, 1],R+).

Proof. Consider the Banach space X = C([0, 1]) normed by ‖x‖ = max
t∈[0,1]

|x(t)| , the

set

K = {x ∈ X | x(t) > 0,∀ t ∈ [0, 1]}
and the positive cone P

P =

{
x ∈ X : x ≥ 0 on [0, 1] and x(t) ≥ 1

4
‖x‖ for

1

4
≤ t ≤ 3

4

}
.

Define the operators T : K → K and F : K → X by

Tx(t) = x(t)3 + a(t)x(t)

Fx(t) = x(t)−
1∫

0

G(t, s)g(s)h(x(s)) ds,

respectively, for t ∈ [0, 1]. Then the integral equation (3.2) is equivalent to the op-
erational equation x = Tx + Fx. We check that all assumptions of Theorem 2.1 are
satisfied.

(a) The operator T : K → K is surjective and it is expansive with constant
a0 > 1.

(b) Using the Arzela-Ascoli compactness criteria, we can show that I − F maps
bounded sets of K into relatively compact sets. In view of the sup-norm and the
continuity of functions G, g and h, it is easily checked that I − F is continuous.
Therefore, the operator I − F : K → P is completely continuous.

(c) Assume the existence of x0 ∈ T−1(P) with ‖Tx0‖ = α and λ0 > 1 such that

x0 = λ0Tx0 + Fx0,

Then, λ0Tx0 = x0 − Fx0 =
1∫
0

G(., s)g(s)h(x0(s)) ds on [0, 1].

So

α < λ0‖Tx0‖ = max
t∈[0,1]

1∫
0

G(t, s)g(s)h(x0(s)) ds. (3.4)

On the other hand, we have

‖x0‖ = ‖T−1Tx0‖ ≤
1

a0
‖Tx0‖ =

1

a0
α,

where 1
a0
< 1 is the Liptchiz constant of T−1, which implies that

0 ≤ x0(t) ≤ 1

a0
α for t ∈ [0, 1].

Since the function h is increasing, we get

0 ≤ h(x0(t)) ≤ h
(

1

a0
α

)
for t ∈ [0, 1].
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Thus, for all t ∈ [0, 1], we obtain

1∫
0

G(t, s)g(s)h(x0(s)) ds ≤ h
(

1
a0
α
) 1∫

0

G(t, s)g(s) ds

≤ ‖
∫ 1

0
G(., s)g(s) ds‖h

(
1
a0
α
)

≤ Ah
(

1
a0
α
)
≤ α.

By passage to the maximum, we obtain

max
t∈[0,1]

1∫
0

G(t, s)g(s)h(x0(s)) ds ≤ α,

which leads to a contradiction with (3.4).

(d) Assume the existence of x1 ∈ T−1(P) with ‖Tx1‖ = β and µ0 > 0 such that

x1 = Tx1 + Fx1 − µ0y0,

where y0 ∈ P with y0(t) > 0 on [0, 1]. Then

1∫
0

G(., s)g(s)h(x1(s)) ds = x1 − Fx1 = Tx1 − µ0y0 < Tx1 on [0, 1].

Since for all t ∈ [0, 1], (Tx1)(t) ≤ ‖Tx1‖ = β, we get

1∫
0

G(t, s)g(s)h(x1(s)) ds < (Tx1)(t) ≤ β, ∀ t ∈ [0, 1]. (3.5)

On the other hand, from the property of Green’s function G, for all t ∈ [ 14 ,
3
4 ], we

have

1∫
0

G(t, s)g(s)h(x1(s)) ds ≥ 1
4

3
4∫
1
4

G(s, s)g(s)h(x1(s)) ds

≥ 1
4

3
4∫
1
4

G(t0, s)g(s)h(x1(s)) ds.

Since ‖Tx1‖ = β there exists t1 ∈ [0, 1] such that (Tx1)(t1) = β. That is

(x1(t1))3 + a(t1)x1(t1) = β ≤ (x1(t1))3 + a0x1(t1),

where a0 = max
t∈[0,1]

a(t). Let β0 = β0(β) > 0 such that β3
0 + a0β0 = β. So x1(t1) ≥ β0,

which implies that ‖x1‖ ≥ β0. Hence x1(s) ≥ 1
4 β0, ∀s ∈ [ 14 ,

3
4 ], which gives

h(x1(s)) ≥ h
(

1

4
β0

)
.
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Thus

1∫
0

G(t, s)g(s)h(x1(s)) ds ≥ 1

4
h

(
1

4
β0

) 3
4∫

1
4

G(t0, s)g(s) ds = Bh

(
1

4
β0

)
≥ β,

which leads to a contradiction with (3.5). Therefor Theorem 2.1 applies and assure
that Problem (3.1) has at least one positive solution x ∈ C([0, 1]) such that

r ≤ ‖Tx‖ ≤ R,

where r = min(α, β) and R = max(α, β). �

3.2. Example 2

Consider the following second-order nonlinear boundary value problem posed on
the positive half-line

− d2

dt2 f(t, x(t)) + k2f(t, x(t)) = g(t)h(t, x(t)), t ∈ (0,+∞).

x(0) = 0, lim
t→+∞

x(t) = 0,
(3.6)

where k is a positive real parameter and f : [0,+∞) × R+ → R+ is a continuous
function defined by:

f(t, u) = u3 + a(t)u, a ∈ C2([0,+∞),R+).

The functions g : [0,+∞)→ R+ and h : [0,+∞)× R+ → R+ are continuous.
Problem (3.6) is equivalent to the integral equation

f(t, x(t)) =

+∞∫
0

G(t, s)g(s)h(s, x(s))ds, (3.7)

where G is the corresponding Green’s function defined by:

G(t, s) =
1

2k

{
e−ks(ekt − e−kt), if 0 < t ≤ s <∞,
e−kt(eks − e−ks), if 0 < s ≤ t <∞.

The Green function G satisfies the following useful estimates:

G(t, s) ≤ G(s, s) ≤ 1
2k , ∀ t, s ∈ [0,+∞).

G(t, s)e−µt ≤ G(s, s)e−ks, ∀ t, s ∈ [0,+∞), ∀µ ≥ k.

G(t, s) ≥ ΛG(s, s)e−ks, ∀ (0 < γ < δ), ∀ t ∈ [γ, δ] , ∀ s ∈ [0,+∞),

where

0 < Λ = min(e−kδ, ekγ − e−kγ) < 1.

Assume that the following conditions are satisfied

(H0) 1 < a0 : = inf
t∈[0,+∞)

a(t) ≤ a0 : = sup
t∈[0,+∞)

a(t).
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(H1) h : [0,+∞)×R+ → R+ is continuous and satisfies the polynomial growth
condition:

∃ d > 0 : d 6= 1, 0 ≤ h(t, x) ≤ b(t) + c(t)xd, ∀(t, x) ∈ [0,+∞)× R+,

where the functions b, c ∈ C([0,+∞),R+).
(H2) Assume the integrals

M1 : =
∞∫
0

e−ksb(s)G(s, s)g(s)ds

M2 : =
∞∫
0

e(dθ−k)sc(s)G(s, s)g(s)ds

are convergent and satisfy

∃R > 0, M1 + M2
1

ad0
Rd ≤ R.

(H3) There exists r with 0 < r < R such that

Λ

δ∫
γ

e−ksG(s, s)g(s)h(s, u) ds ≥ reθδ for all u ≥ Λr0,

where r0 = r0(r) > 0 such that r30 + a0r0 = r.
Now we state our main result.

Theorem 3.3. Let Assumptions (H0)-(H3) be satisfied. Then the nonlinear boundary
value problem (3.6) has at least one positive solution.

Proof. Given a real parameter θ ≥ k and consider the weighted Banach space

X =

{
x ∈ C([0,+∞),R) : sup

t∈[0,+∞)

{e−θt|x(t)|} <∞

}
normed by

‖x‖θ = sup
t∈[0,+∞)

{e−θt|x(t)|}.

Consider the set

K = {x ∈ X | x(t) > 0,∀ t ∈ [0,+∞)}.
For arbitrary positive real numbers 0 < γ < δ, let P the positive cone defined in X
by

P =

{
x ∈ X : x ≥ 0 on [0,+∞) and min

t∈[γ,δ]
x(t) ≥ Λ‖x‖θ

}
.

Define the operators T : K → K and F : K → X by:

Tx(t) = x(t)3 + a(t)x(t)

Fx(t) = x(t)−
+∞∫
0

G(t, s)g(s)h(s, x(s)) ds,
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respectively, for t ∈ [0,+∞).Then the integral equation (3.7) is equivalent to the
operational equation x = Tx + Fx. We check that all assumptions of Theorem 2.1
are satisfied:

(a) The operator T : K → K is surjective and it is expansive with constant
a0 > 1.

(b) Using the properties of Green function G and appealing to the Zima com-
pactness criteria (see [17, 18]), we can show that the operator I − F : K → P is
completely continuous (see [7, 8] ).

(c) Assume the existence of x0 ∈ T−1(P) with ‖Tx0‖θ = R and λ0 > 1 such
that

x0 = λ0Tx0 + Fx0,

Then, λ0Tx0 = x0 − Fx0 =
+∞∫
0

G(., s)g(s)h(s, x0(s)) ds on [0,+∞).

So

R < λ0‖Tx0‖θ = ‖(I − F )x0‖θ. (3.8)

On the other hand, we have

‖x0‖θ = ‖T−1Tx0‖θ ≤
1

a0
‖Tx0‖θ =

1

a0
R,

where 1
a0
< 1 is the Liptchiz constant of T−1. Thus, by Assumptions (H1), (H2) and

the properties of function G, for all t ∈ [0,+∞), we obtain

|(I − F )x0(t)|e−θt =
+∞∫
0

e−θtG(t, s)g(s)h(s, x0(s)) ds

≤
+∞∫
0

e−ksG(s, s)g(s)[b(s) + c(s)|x0(s)|d] ds

≤
+∞∫
0

e−ksG(s, s)g(s)b(s) ds

+‖x0‖dθ
+∞∫
0

e(dθ−k)sG(s, s)g(s)c(s) ds

≤ M1 +M2‖x0‖dθ
≤ M1 + 1

ad0
Rd ≤ R.

By passage to the supremum over t, we get

sup
t∈[0,+∞)

{|(I − F )x0(t)|e−θt} ≤M1 +M2‖x0‖dθ ≤ R,

which leads to a contradiction with (3.8).
(d) Assume the existence of x1 ∈ T−1(P) with ‖Tx1‖θ = r and µ0 > 0 such that

x1 = Tx1 + Fx1 − µ0y0,

where y0 ∈ P with y0(t) > 0 on [0,+∞). Then

+∞∫
0

G(t, s)g(s)h(s, x1(s)) ds = x1 − Fx1 = Tx1 − µ0y0 < Tx1.
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Since for all t ∈ [0,+∞), |(Tx1)(t)|e−θt ≤ ‖Tx1‖θ = r, we get

+∞∫
0

G(t, s)g(s)h(s, x1(s)) ds < (Tx1)(t) ≤ reθδ, ∀ t ∈ [γ, δ]. (3.9)

On the other hand, ‖Tx1‖θ = r implies one of the following cases:

Case 1. There exists t1 ∈ [0,+∞) such that |(Tx1)(t1)|e−θt1 = r. That is

(e−θt1x1(t1))3 + a(t1)e−θt1x1(t1) = r ≤ (e−θt1x1(t1))3 + a0e−θt1x1(t1),

where a0 = sup
t∈[0,+∞)

a(t). Let r0 = r0(r) > 0 such that r30 + a0r0 = r.

Thus, e−θt1x1(t1) ≥ r0, which implies that ‖x1‖θ ≥ r0.Hence x1(s) ≥ Λ r0, ∀s ∈ [γ, δ].

Case 2. lim
t→+∞

|(Tx1)(t)|e−θt = r. That is

lim
t→+∞

(e−θtx1(t))3 + lim
t→+∞

a(t) lim
t→+∞

e−θtx1(t) = r

≤ lim
t→+∞

(e−θtx1(t))3 + a0 lim
t→+∞

e−θtx1(t).

Thus, there exists r0 = r0(r) > 0 such that

lim
t→+∞

e−θtx1(t) ≥ r0,

which gives ‖x1‖θ ≥ r0.
Consequently, from Assumption (H2) and the properties of Green function G, for all
t ∈ [γ, δ], we have

+∞∫
0

G(t, s)g(s)h(s, x1(s)) ds ≥ Λ
+∞∫
0

e−ksG(s, s)g(s)h(s, x1(s)) ds

≥ Λ
δ∫
γ

e−ksG(s, s)g(s)h(s, x1(s)) ds

≥ reθδ,

which leads to a contradiction with (3.9). Then Theorem 2.1 applies. Therefore, Prob-
lem (3.6) has at least one solution x ∈ K such that

r ≤ ‖Tx‖ ≤ R. �

3.3. Example 3

In the following example, we will use the Theorem 2.4 to study the existence
of positive solutions to a boundary value problem for a system of differential equa-
tions of the second order. A study that allows the nonlinear term of our system to
have different behaviors both in components and in variables, and it gives a kind of
localization of each component of a solution.
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Consider the following nonlinear boundary value problem for system of two dif-
ferential equations with Dirichlet condition

− d2

dt2 f1(t, x1(t)) = g1(t)h1(x1(t), x2(t)), 0 < t < 1

− d2

dt2 f2(t, x2(t)) = g2(t)h2(x1(t), x2(t)), 0 < t < 1
x1(0) = x1(1) = 0,
x2(0) = x2(1) = 0,

(3.10)

where for i ∈ {1, 2}, fi : [0, 1]× R+ → R+ are continuous functions defined by:

fi(t, u) = u3 + ai(t)u, ai ∈ C2([0, 1],R+).

gi ∈ C([0, 1],R+) and hi : R+ × R+ → R+ are continuous increasing functions with
respect to its two variables.

The system (3.10) is equivalent to the integral system
f1(t, x1(t)) =

1∫
0

G(t, s)g1(s)h1(x(s))ds, t ∈ [0, 1]

f2(t, x2(t)) =
1∫
0

G(t, s)g2(s)h2(x(s))ds, t ∈ [0, 1],

(3.11)

where x = (x1, x2) and G is the corresponding Green’s function given in (3.3). We
will set

Ai : = max
t∈[0,1]

∫ 1

0
G(t, s)gi(s) ds,

Bi : = 1
4

3
4∫
1
4

G(t0i , s)gi(s) ds, for some t0i ∈ [0, 1].

In what follows we consider i ∈ {1, 2} and let
(C0) 1 < a0i := min

t∈[0,1]
ai(t) ≤ b0i := max

t∈[0,1]
ai(t).

Assume that the following assumptions hold for some αi, βi with αi 6= βi:
(C1) Aihi(

1
a01
α1,

1
a02
α2) ≤ αi,

(C2) Bihi(
1
4β

0
1 ,

1
4β

0
2) ≥ βi, where β0

i = β0
i (βi) > 0 such that (β0

i )3 + b0iβ
0
i = βi.

Our main existence result on system (3.10) is

Theorem 3.4. Let Assumptions (C0)-(C2) be satisfied. Then the system (3.10) has a
solution x = (x1, x2) which belongs to C([0, 1],R+)× C([0, 1],R+).

Proof. We apply Theorem 2.4. Here X1 = X2 = C[0, 1] with norm

‖u‖∞ = max
t∈[0,1]

|u(t)|,

and

K1 = K2 = {u ∈ C[0, 1] : u(t) ≥ 0 for all t ∈ [0, 1]};

P1 = P2 =

{
u ∈ u ∈ C[0, 1] : u ≥ 0 on [0, 1] and u(t) ≥ 1

4
‖u‖ for

1

4
≤ t ≤ 3

4

}
.

Define the operators Ti : Ki → Ki and Fi : K1 ×K2 → Xi, for i = 1, 2, by:

Tixi(t) = xi(t)
3 + ai(t)xi(t)
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Fix(t) = xi(t)−
1∫

0

G(t, s)gi(s)hi(x(s)) ds,

respectively, for t ∈ [0, 1].
Then, the integral system (3.11) is equivalent to the operator equation

(x1, x2) = (T1x1 + F1(x1, x2), T2x2 + F2(x1, x2)),

According to Theorem 2.4 and in a way similar to the one used to show Theorem
3.2, we can easily show that the system (3.10) has at least one positive solution
x = (x1, x2) which belongs to C[0, 1]× C[0, 1] such that

ri ≤ ‖Tixi‖ ≤ Ri,
where ri = min(αi, βi) and Ri = max(αi, βi) for i = 1, 2. �
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