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A coupled system of fractional difference
equations with anti-periodic boundary
conditions

Jagan Mohan Jonnalagadda

Abstract. In this article, we give sufficient conditions for the existence, uniqueness
and Ulam–Hyers stability of solutions for a coupled system of two-point nabla
fractional difference boundary value problems subject to anti-periodic boundary
conditions, using the vector approach of Precup [4, 14, 19, 21]. Some examples
are included to illustrate the theory.
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1. Introduction

In [21], Precup described the advantage of vector-valued norms in the study of
the semilinear operator system {

N1(u1, u2) = u1,

N2(u1, u2) = u2,
(1.1)

in a Banach space X with norm | · |, by some methods of nonlinear analysis. Here N1,
N2 : X2 → X are given nonlinear operators. Obviously, this system can be viewed as
a fixed point problem:

Nu = u, (1.2)
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in the space X2, where u = (u1, u2) and N = (N1, N2). Precup [21] proposed the
applications of a few fixed point theorems to the system 1.1 in X2, by using the
vector-valued norm

‖u‖ =

(
|u1|
|u2|

)
,

for u = (u1, u2) ∈ X2. Also, Precup [21] demonstrated that the results obtained by
using the vector-valued norm are better than those established by means of any scalar
norm in X2.

Theorem 1.1. [21] Assume that

(H1) for each i ∈ {1, 2}, there exist nonnegative numbers ai and bi such that

|Ni(u1, u2)−Ni(v1, v2)| ≤ ai|u1 − v1|+ bi|u2 − v2|, (1.3)

for all (u1, u2), (v1, v2) ∈ X2;

(H2) The spectral radius of M =

(
a1 b1
a2 b2

)
is less than one.

Then, (1.1) has a unique solution (u1, u2) ∈ X2.

Theorem 1.2. [21] Assume that

(H3) for each i ∈ {1, 2}, the operator Ni is completely continuous and, there exist
nonnegative numbers ai, bi and ci such that

|Ni(u1, u2)| ≤ ai|u1|+ bi|u2|+ ci, (1.4)

for all (u1, u2) ∈ X2.

In addition, assume that condition (H2) is satisfied. Then, (1.1) has at least one
solution (u1, u2) ∈ X2 satisfying(

|u1|
|u2|

)
≤ (I −M)−1

(
c1
c2

)
. (1.5)

Further, in [25], the author used the following theorem to establish Ulam–Hyers
stability of solutions of (1.1):

Theorem 1.3. [25] Assume that the hypothesis of Theorem 1.1 holds. Then, the system
(1.1) is Ulam–Hyers stable.

Motivated by these results, in this article, we consider the following coupled
system of nabla fractional difference equations with anti-periodic boundary conditions

(
∇α1−1

0

(
∇u1

))
(t) + f1(u1(t), u2(t)) = 0, t ∈ NT2 ,(

∇α2−1
0

(
∇u2

))
(t) + f2(u1(t), u2(t)) = 0, t ∈ NT2 ,

u1(0) + u1(T ) = 0,
(
∇u1

)
(1) +

(
∇u1

)
(T ) = 0,

u2(0) + u2(T ) = 0,
(
∇u2

)
(1) +

(
∇u2

)
(T ) = 0,

(1.6)

and apply Theorems 1.1 - 1.3 to establish sufficient conditions on existence, unique-
ness, and Ulam–Hyers stability [5, 6, 7, 17, 11, 13, 15, 22, 23, 24] of its solutions. For
this purpose, we convert the system (1.6) in the form of (1.1). But the results may not
be straightforward because the computation of nonnegative numbers in each theorem
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for the system (1.6) is complicated due to the presence of nabla fractional difference
operators in it.

Here T ∈ N2; 1 < α1, α2 < 2; f1, f2 : R2 → R are continuous, ∇ν0 denotes
the νth-th order Riemann–Liouville type backward (nabla) difference operator where
ν ∈ {α1 − 1, α2 − 1} and ∇ denotes the first order nabla difference operator.

The present article is organized as follows: Section 2 contains preliminaries. In
Section 3, we establish sufficient conditions on existence, uniqueness, and Ulam–Hyers
stability of solutions of the system (1.6). We provide two examples in Section 4 to
illustrate the applicability of established results.

2. Preliminaries

For our convenience, in this section, we present a few useful definitions and
fundamental facts of nabla fractional calculus, which can be found in [1, 2, 3, 8, 9,
10, 16, 18, 20].

Denote by Na = {a, a + 1, a + 2, . . .} and Nba = {a, a + 1, a + 2, . . . , b} for any
a, b ∈ R such that b − a ∈ N1. The backward jump operator ρ : Na → Na is defined
by ρ(t) = max{a, t − 1}, for all t ∈ Na. Define the µth-order nabla fractional Taylor
monomial by

Hµ(t, a) =
(t− a)µ

Γ(µ+ 1)
=

Γ(t− a+ µ)

Γ(t− a)Γ(µ+ 1)
, t ∈ Na, µ ∈ R \ {. . . ,−2,−1}.

Here Γ(·) denotes the Euler gamma function. Observe that Hµ(a, a) = 0 and
Hµ(t, a) = 0 for all µ ∈ {. . . ,−2,−1} and t ∈ Na. The first order backward (nabla)
difference of u : Na → R is defined by

(
∇u
)
(t) = u(t)− u(t− 1), for t ∈ Na+1.

Definition 2.1 (See [9]). Let u : Na+1 → R and ν > 0. The νth-order nabla sum of u
based at a is given by(

∇−νa u
)
(t) =

t∑
s=a+1

Hν−1(t, ρ(s))u(s), t ∈ Na,

where by convention
(
∇−νa u

)
(a) = 0.

Definition 2.2 (See [9]). Let u : Na+1 → R and 0 < ν ≤ 1. The νth-order nabla
difference of u is given by(

∇νau
)
(t) =

(
∇
(
∇−(1−ν)a u

))
(t), t ∈ Na+1.

Lemma 2.3 (See [9]). We have the following properties of nabla fractional Taylor
monomials.

1. ∇Hµ(t, a) = Hµ−1(t, a), t ∈ Na.

2.
∑t
s=a+1Hµ(s, a) = Hµ+1(t, a), t ∈ Na.

3.
∑t
s=a+1Hµ(t, ρ(s)) = Hµ+1(t, a), t ∈ Na.

Proposition 2.4 (See [12]). Let s ∈ Na and −1 < µ. The following properties hold:

(a) Hµ(t, ρ(s)) ≥ 0 for t ∈ Nρ(s) and, Hµ(t, ρ(s)) > 0 for t ∈ Ns.
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(b) Hµ(t, ρ(s)) is a decreasing function with respect to s for t ∈ Nρ(s) and µ ∈ (0,∞).
(c) If t ∈ Ns and µ ∈ (−1, 0), then Hµ(t, ρ(s)) is an increasing function of s.
(d) Hµ(t, ρ(s)) is a non-decreasing function with respect to t for t ∈ Nρ(s) and µ ∈

[0,∞).
(e) If t ∈ Ns and µ ∈ (0,∞), then Hµ(t, ρ(s)) is an increasing function of t.
(f) Hµ(t, ρ(s)) is a decreasing function with respect to t for t ∈ Ns+1 and µ ∈ (−1, 0).

Proposition 2.5 (See [12]). Let u and v be two nonnegative real-valued functions defined
on a set S. Further, assume u and v achieve their maximum values in S. Then,

|u(t)− v(t)| ≤ max{u(t), v(t)} ≤ max
{

max
t∈S

u(t),max
t∈S

v(t)
}
,

for every fixed t in S.

3. Green’s function and its property

Assume T ∈ N2, 1 < α < 2, and h : NT2 → R. Consider the boundary value
problem {(

∇α−10

(
∇u
))

(t) + h(t) = 0, t ∈ NT2 ,
u(0) + u(T ) = 0,

(
∇u
)
(1) +

(
∇u
)
(T ) = 0.

(3.1)

First, we construct the Green’s function, G(t, s) corresponding to (3.1), and obtain
an expression for its unique solution. Denote by

D1 = {(t, s) ∈ NT0 × NT2 : t ≥ s}, D2 = {(t, s) ∈ NT0 × NT2 : t ≤ ρ(s)},
and

ξα = 2 [1 +Hα−2(T, 0)] . (3.2)

Theorem 3.1. The unique solution of the nabla fractional boundary value problem
(3.1) is given by

u(t) =

T∑
s=2

Gα(t, s)h(s), t ∈ NT0 , (3.3)

where

Gα(t, s) =

{
Kα(t, s)−Hα−1(t, ρ(s)), (t, s) ∈ D1,

Kα(t, s), (t, s) ∈ D2.
(3.4)

Here

Kα(t, s) =
1

ξα

[
Hα−1(T, ρ(s)) + 2Hα−1(t, 0)Hα−2(T, ρ(s))

+Hα−1(T, ρ(s))Hα−2(T, 0)−Hα−1(T, 0)Hα−2(T, ρ(s))
]
.

Proof. Denote by (
∇u
)
(t) = v(t), t ∈ NT1 .

Subsequently, the difference equation in (3.1) takes the form(
∇α−10 v

)
(t) + h(t) = 0, t ∈ NT2 . (3.5)
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Let v(1) = c2. Then, by Lemma 5.1 of [1], the unique solution of (3.5) is given by

v(t) = Hα−2(t, 0)c2 −
(
∇−(α−1)1 h

)
(t), t ∈ NT1 .

That is, (
∇u
)
(t) = Hα−2(t, 0)c2 −

(
∇−(α−1)1 h

)
(t), t ∈ NT1 . (3.6)

Applying the first order nabla sum operator, ∇−1 on both sides of (3.6), we obtain

u(t) = c1 +Hα−1(t, 0)c2 −
(
∇−α1 h

)
(t), t ∈ NT0 , (3.7)

where c1 = u(0). We use the pair of anti-periodic boundary conditions considered in
(3.1) to eliminate the constants c1 and c2 in (3.7). It follows from the first boundary
condition u(0) + u(T ) = 0 that

2c1 +Hα−1(T, 0)c2 =
(
∇−α1 h

)
(T ). (3.8)

The second boundary condition
(
∇u
)
(1) +

(
∇u
)
(T ) = 0 yields

[1 +Hα−2(T, 0)] c2 =
(
∇−(α−1)1 h

)
(T ). (3.9)

Solving (3.8) and (3.9) for c1 and c2, we obtain

c1 =
1

2

[
T∑
s=2

Hα−1(T, ρ(s))h(s)− 2Hα−1(T, 0)

ξα

T∑
s=2

Hα−2(T, ρ(s))h(s)

]
, (3.10)

c2 =
2

ξα

T∑
s=2

Hα−2(T, ρ(s))h(s). (3.11)

Substituting these expressions in (3.7), we achieve (3.4). �

Lemma 3.2. Observe that

|Kα(t, s)| ≤ 1

ξα

[
Hα−1(T, 1) + 2Hα−1(T, 0) +Hα−2(T, 0)Hα−1(T, 1)

]
, (3.12)

for all (t, s) ∈ NT0 × NT2 .

Proof. Denote by

K ′α(t, s) =
1

ξα

[
Hα−1(T, ρ(s)) + 2Hα−1(t, 0)Hα−2(T, ρ(s))

+Hα−1(T, ρ(s))Hα−2(T, 0)
]
, (3.13)

and

K ′′α(t, s) =
1

ξα

[
Hα−1(T, 0)Hα−2(T, ρ(s))

]
, (3.14)

so that

Kα(t, s) = K ′α(t, s)−K ′′α(t, s), (t, s) ∈ NT0 × NT2 .
Clearly, from Proposition 2.4,

K ′α(t, s) ≥ 0, K ′′α(t, s) > 0, for all (t, s) ∈ NT0 × NT2 .
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From Proposition 2.5, it is obvious that

|Kα(t, s)| ≤
{

max
(t,s)∈NT

0 ×NT
2

K ′α(t, s), max
(t,s)∈NT

0 ×NT
2

K ′′α(t, s)

}
. (3.15)

First, we evaluate the first backward difference of K ′α(t, s) with respect to t for a fixed
s. Consider

∇K ′α(t, s) =
1

ξα

[
2Hα−2(t, 0)Hα−2(T, ρ(s))

]
> 0,

for all (t, s) ∈ NT0 × NT2 , implying that K ′α(t, s) is an increasing function of t for a
fixed s. Thus, we have

K ′α(t, s) ≤ K ′α(T, s), (t, s) ∈ NT0 × NT2 . (3.16)

It follows from (3.13) - (3.16) that

|Kα(t, s)|

≤
{

max
(t,s)∈NT

0 ×NT
2

K ′α(t, s), max
(t,s)∈NT

0 ×NT
2

K ′′α(t, s)

}
≤
{

max
s∈NT

2

K ′α(T, s),max
s∈NT

2

K ′′α(t, s)

}
= max
s∈NT

2

K ′α(T, s)

=
1

ξα
max
s∈NT

2

[
Hα−1(T, ρ(s)) + 2Hα−1(T, 0)Hα−2(T, ρ(s))

+Hα−1(T, ρ(s))Hα−2(T, 0)
]

≤ 1

ξα

[
max
s∈NT

2

Hα−1(T, ρ(s)) + 2Hα−1(T, 0) max
s∈NT

2

Hα−2(T, ρ(s))

+Hα−2(T, 0) max
s∈NT

2

Hα−1(T, ρ(s))
]

=
1

ξα

[
Hα−1(T, ρ(2)) + 2Hα−1(T, 0)Hα−2(T, ρ(T )) +Hα−2(T, 0)Hα−1(T, ρ(2))

]
=

1

ξα

[
Hα−1(T, 1) + 2Hα−1(T, 0) +Hα−2(T, 0)Hα−1(T, 1)

]
.

The proof is complete. �

4. Main results

Let X = RT+1 be the Banach space of all real (T + 1)-tuples equipped with the
maximum norm

|u| = max
t∈NT

0

|u(t)|.

Obviously, the product space X2 is also a Banach space with the vector-norm

‖u‖ =

(
|u1|
|u2|

)
,
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for u = (u1, u2) ∈ X2.
For our convenience, denote by

Λi =
1

ξαi

[
Hαi−1(T, 1) + 2Hαi−1(T, 0) +Hαi−2(T, 0)Hαi−1(T, 1)

]
, (4.1)

ai = li [Λi(T − 1) +Hαi
(T, 1)] , (4.2)

bi = mi [Λi(T − 1) +Hαi
(T, 1)] , (4.3)

ci = ni [Λi(T − 1) +Hαi(T, 1)] , (4.4)

for i = 1, 2.
Define the operator T : X2 → X2 by

T (u1, u2)(t) =

(
T1(u1, u2)(t)
T2(u1, u2)(t)

)
, t ∈ NT0 , (4.5)

where

T1(u1, u2)(t)

=

T∑
s=2

Gα1(t, s)f1(u1(s), u2(s))

=

T∑
s=2

Kα1
(t, s)f1(u1(s), u2(s))−

t∑
s=2

Hα1−1(t, s)f1(u1(s), u2(s)), (4.6)

and

T2(u1, u2)(t)

=

T∑
s=2

Gα2(t, s)f2(u1(s), u2(s))

=

T∑
s=2

Kα2
(t, s)f2(u1(s), u2(s))−

t∑
s=2

Hα2−1(t, s)f2(u1(s), u2(s)). (4.7)

Theorem 4.1. A couple (u1, u2) ∈ X2 is a solution of (1.6) if, and only if,{
T1(u1, u2) = u1,

T2(u1, u2) = u2.
(4.8)

In view of Theorem 4.1 it is enough to apply Theorems 1.1 - 1.3 to the system
(4.8).

Theorem 4.2. Assume that

(I) for each i ∈ {1, 2}, there exist nonnegative numbers li and mi such that

|fi(u1, u2)− fi(v1, v2)| ≤ li|u1 − v1|+mi|u2 − v2|, (4.9)

for all (u1, u2), (v1, v2) ∈ X2;

In addition, assume that condition (H2) is satisfied. Then, (4.8) has a unique solution
(u1, u2) ∈ X2.
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Proof. For each i ∈ {1, 2} and for all (u1, u2), (v1, v2) ∈ X2, consider

|Ti(u1, u2)− Ti(v1, v2)|

≤
T∑
s=2

|Kαi
(t, s)| |fi(u1(s), u2(s))− fi(v1(s), v2(s))|

+
t∑

s=2

Hαi−1(t, s) |fi(u1(s), u2(s))− fi(v1(s), v2(s))|

≤ [li|u1 − v1|+mi|u2 − v2|]

[
T∑
s=2

|Kαi(t, s)|+
t∑

s=2

Hαi−1(t, s)

]
≤ [li|u1 − v1|+mi|u2 − v2|] [Λi(T − 1) +Hαi

(t, 1)]

≤ [li|u1 − v1|+mi|u2 − v2|] [Λi(T − 1) +Hαi(T, 1)]

≤ ai|u1 − v1|+ bi|u2 − v2|,

implying that (H1) holds. Thus, by Theorem 1.1, the system (4.8) has a unique
solution (u1, u2) ∈ X2. �

Theorem 4.3. Assume that

(II) for each i ∈ {1, 2}, there exist nonnegative numbers ai, bi and ci such that

|fi(u1, u2)| ≤ li|u1|+mi|u2|+ ni, (4.10)

for all (u1, u2) ∈ X2.

In addition, assume that condition (H2) is satisfied. Then, (4.8) has at least one
solution (u1, u2) ∈ X2 satisfying (1.5).

Proof. Since Ti, i = 1, 2, is a summation operator on a discrete finite set, it is trivially
completely continuous on X2. For each i ∈ {1, 2} and for all (u1, u2) ∈ X2, consider

|Ti(u1, u2)| ≤
T∑
s=2

|Kαi
(t, s)| |fi(u1(s), u2(s))|+

t∑
s=2

Hαi−1(t, s) |fi(u1(s), u2(s))|

≤ [li|u1|+mi|u2|+ ni]

[
T∑
s=2

|Kαi
(t, s)|+

t∑
s=2

Hαi−1(t, s)

]
≤ [li|u1|+mi|u2|+ ni] [Λi(T − 1) +Hαi

(t, 1)]

≤ [li|u1|+mi|u2|+ ni] [Λi(T − 1) +Hαi
(T, 1)]

≤ ai|u1|+ bi|u2|+ ci,

implying that (H3) holds. Thus, by Theorem 1.2, the system (4.8) has at least one
solution (u1, u2) ∈ X2 satisfying (1.5). �

Definition 4.4. [25] Let X be a Banach space and T1, T2 : X × X → X be two
operators. Then, the system (4.8) is said to be Ulam–Hyers stable if there exist C1,
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C2, C3, C4 > 0 such that for each ε1, ε2 > 0 and each solution-pair (u∗1, u
∗
2) ∈ X ×X

of the in-equations: {
‖u1 − T1(u1, u2)‖X ≤ ε1,
‖u2 − T2(u1, u2)‖X ≤ ε2,

(4.11)

there exists a solution (v∗1 , v
∗
2) ∈ X ×X of (4.8) such that{
‖u∗1 − v∗1‖X ≤ C1ε1 + C2ε2,

‖u∗2 − v∗2‖X ≤ C3ε1 + C4ε2.
(4.12)

Theorem 4.5. Assume that the hypothesis of Theorem 4.2 holds. Then, the system
(4.8) is Ulam–Hyers stable.

5. Examples

In this section, we provide two examples to illustrate the applicability of Theorem
4.2, Theorem 4.3, and Theorem 4.5.

Example 5.1. Consider the following boundary value problem for a coupled system of
fractional difference equations

(
∇0.5

0

(
∇u1

))
(t) + (0.001)

[
1 + tan−1 u1(t) + tan−1 u2(t)

]
= 0, t ∈ N9

2,(
∇0.5

0

(
∇u2

))
(t) + (0.002) [1 + sinu1(t) + sinu2(t)] = 0, t ∈ N9

2,

u1(0) + u1(9) = 0,
(
∇u1

)
(1) +

(
∇u1

)
(9) = 0,

u2(0) + u2(9) = 0,
(
∇u2

)
(1) +

(
∇u2

)
(9) = 0.

(5.1)

Comparing (1.6) and (5.1), we have T = 9, α1 = α2 = 1.5,

f1(u1, u2) = (0.001)
[
1 + tan−1 u1 + tan−1 u2

]
,

and

f2(u1, u2) = (0.002) [1 + sinu1 + sinu2] ,

for all (u1, u2) ∈ R2. Clearly, f1 and f2 are continuous on R2. Next, f1 and f2 satisfy
assumption (I) with l1 = 0.001, m1 = 0.001, l2 = 0.002 and m2 = 0.002. We have,

a1 = l1 [Λ1(T − 1) +Hα1
(T, 1)] = 0.0527,

a2 = l2 [Λ2(T − 1) +Hα2
(T, 1)] = 0.1053,

b1 = m1 [Λ1(T − 1) +Hα1
(T, 1)] = 0.0527,

b2 = m2 [Λ2(T − 1) +Hα2(T, 1)] = 0.1053.

Further,

M =

(
a1 b1
a2 b2

)
=

(
0.0527 0.0527
0.1053 0.1053

)
.

The spectral radius of M is 0.158, which is less than one, implying that M converges
to zero. Hence, by Theorem 4.2, the system (5.1) has a unique solution (u1, u2) ∈ X2.
Also, by Theorem 4.5, the unique solution of (5.1) is Ulam–Hyers stable.
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Example 5.2. Consider the following boundary value problem for a coupled system of
fractional difference equations

(
∇0.5

0

(
∇u1

))
(t) + (0.01)

[
1 + 1√

1+u2
1(t)

+ u2(t)

]
= 0, t ∈ N4

2,(
∇0.5

0

(
∇u2

))
(t) + (0.02)

[
1 + u1(t) + 1√

1+u2
2(t)

]
= 0, t ∈ N4

2,

u1(0) + u1(4) = 0,
(
∇u1

)
(1) +

(
∇u1

)
(4) = 0,

u2(0) + u2(4) = 0,
(
∇u2

)
(1) +

(
∇u2

)
(4) = 0.

(5.2)

Comparing (1.6) and (5.2), we have T = 4, α1 = α2 = 1.5,

f1(u1, u2) = (0.01)

[
1 +

1√
1 + u21(t)

+ u2(t)

]
,

and

f2(u1, u2) = (0.02)

[
1 + u1(t) +

1√
1 + u22(t)

]
,

for all (u1, u2) ∈ R2. Clearly, f1 and f2 are continuous on R2. Next, f1 and f2 satisfy
assumption (II) with l1 = 0.01, m1 = 0.01, l2 = 0.02, m2 = 0.02, n1 = 0.01 and
n2 = 0.02. We have,

a1 = l1 [Λ1(T − 1) +Hα1
(T, 1)] = 0.1219,

a2 = l2 [Λ2(T − 1) +Hα2(T, 1)] = 0.2438,

b1 = m1 [Λ1(T − 1) +Hα1(T, 1)] = 0.1219,

b2 = m2 [Λ2(T − 1) +Hα2
(T, 1)] = 0.2438,

c1 = n1 [Λ1(T − 1) +Hα1
(T, 1)] = 0.1219,

c2 = n2 [Λ2(T − 1) +Hα2(T, 1)] = 0.2438.

Further,

M =

(
a1 b1
a2 b2

)
=

(
0.1219 0.1219
0.2438 0.2438

)
.

The spectral radius of M is 0.3657, which is less than one, implying that M converges
to zero. Hence, by Theorem 4.3, the system (5.2) has at least one solution (u1, u2) ∈
X2 satisfying (

|u1|
|u2|

)
≤ (I −M)−1

(
c1
c2

)
=

(
0.1757
0.2658

)
.

Conclusion

In this article, we obtained sufficient conditions on existence, uniqueness and
Ulam–Hyers stability of solutions of the system (1.6) using the approaches of Precup
and Urs. We also provided two examples to demonstrate the applicability of estab-
lished results. Observe that Theorem 4.2 is not applicable to the system (5.1).



A coupled system of fractional difference equations 397

References

[1] Abdeljawad, T., Atici, F.M., On the definitions of nabla fractional operators, Abstr.
Appl. Anal., 2012(2012), Art. ID 406757, 13 pp.

[2] Ahrendt, K. Castle, L., Holm, M., Yochman, K., Laplace transforms for the nabla-
difference operator and a fractional variation of parameters formula, Commun. Appl.
Anal., 16(2012), no. 3, 317-347.

[3] Atici, Ferhan, M., Eloe, P.W., Discrete fractional calculus with the nabla operator, Elec-
tron. J. Qual. Theory Differ. Equ., 2009, Special Edition I, no. 3, 12 pp.

[4] Bolojan-Nica, O., Infante, G., Precup, R., Existence results for systems with coupled
nonlocal initial conditions, Nonlinear Anal., 94(2014), 231-242.

[5] Chen, C., Bohner, M., Jia, B., Ulam-Hyers stability of Caputo fractional difference equa-
tions, Math. Meth. Appl. Sci., (2019), 1-10.

[6] Chen, F., Zhou, Y., Existence and Ulam stability of solutions for discrete fractional
boundary value problem, Discrete Dynamics in Nature and Society, 2013, Art. ID 459161,
7 pp.

[7] Dutta, B.K., Arora, L.K., Hyers-Ulam stability for a class of nonlinear fractional dif-
ferential equations, Rev. Bull. Calcutta Math. Soc., 21(2013), no. 1, 95-102.

[8] Gholami, Y., Ghanbari, K., Coupled systems of fractional ∇-difference boundary value
problems, Differ. Equ. Appl., 8(2016), no. 4, 459-470.

[9] Goodrich, C., Peterson, A.C., Discrete Fractional Calculus, Springer, Cham, 2015.

[10] Hein, J., McCarthy, S., Gaswick, N., McKain, B., Speer, K., Laplace transforms for the
nabla difference operator, Panamer. Math. J., 21(2011), 79-96.

[11] Hyers, D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci.
U.S.A., 27(1941), 222-224.

[12] Ikram, A., Lyapunov inequalities for nabla Caputo boundary value problems, J. Difference
Equ. Appl., 25(2019), no. 6, 757-775.

[13] Jagan, M.J., Hyers-Ulam stability of fractional nabla difference equations, Int. J. Anal.
2016, Art. ID 7265307, 5 pp.

[14] Jebelean, P., Precup, R., Solvability of p, q-Laplacian systems with potential boundary
conditions, Appl. Anal., 89(2010), no. 2, 221-228.

[15] Jung, S.M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analy-
sis, Springer, New York, 2011.

[16] Kelley, W.G., Peterson, A.C., Difference Equations. An Introduction with Applications,
Second edition, Harcourt/Academic Press, San Diego, CA, 2001.

[17] Khan, H., Li, Y., Chen, W., Baleanu, D., Khan, A., Existence theorems and Hyers-
Ulam stability for a coupled system of fractional differential equations with p-Laplacian
operator, Bound. Value Probl., 2017, Paper No. 157, 16.

[18] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional
Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V.,
Amsterdam, 2006.

[19] Nica, O., Precup, R., On the nonlocal initial value problem for first order differential
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