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Abstract. In the present note we modify a linear positive Markov process of
discrete type by using so called multiplicative calculus. In this framework, a
convergence property and the error of approximation are established. In the final
part some numerical examples are delivered.
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1. Introduction

The study of the linear methods of approximation, which are given by sequences
of linear and positive operators, has become a firmly rooted part of an old area
of mathematical research called Approximation Theory. It has a great potential for
applications to a wide variety of issues.

The starting point of this note is a general approximation process of discrete
type which acts on the real valued functions defined on a compact interval K ⊂ R.
Since a linear substitution maps any compact interval [a, b] into [0, 1], we will only
consider functions defined on [0, 1]. Each operator Ln of the class to which we refer,
uses an equidistant network with a flexible step of the form ∆n = (kλn)0≤k≤n, where
(λn)n≥1 is a strictly decreasing sequence of real numbers with the property

0 < λn ≤
1

n
, n ∈ N. (1.1)

The operators we are referring to are designed as follows

(Lnf)(x) =

n∑
k=0

ak(λn;x)f(kλn), n ∈ N, x ∈ [0, 1], (1.2)
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where the function ak(λn; ·) : [0, 1] → R+ is continuous for each n ∈ N and
k ∈ {0, 1, . . . , n}. The condition (1.2) guarantees that ∆n is indeed a network on
the compact [0, 1].

Typically, the operators described by (1.2) satisfy the condition of reproducing
constants. Being linear operators, this property is involved in achieving the following
identity

n∑
k=0

ak(λn;x) = 1, x ∈ [0, 1]. (1.3)

Throughout the paper, we consider this as a working hypothesis. Note that such
operators are called Markov operators.

At this point we refer to non-Newtonian calculus also called as multiplicative cal-
culus. In the 1970s, Michael Grossman and Robert Katz [5] have developed this type
of calculation moving the roles of subtraction and addition to division and multiplica-
tion. See also Dick Stanley’s paper [8]. This type of calculus was also called geometric
calculus in order to emphasize that changes in function arguments are measured by
differences, while changes in values are measured in ratios. Recently, Bashirov et al.
[1] have given the complete mathematical description of multiplicative calculus. In the
last decade there have been extensions of this notion in different directions of math-
ematics, even if it has a relatively restrictive area of applications than the classical
calculus of Newton and Leibniz covering only positive quantities. Of the area where
this type of approach has proven efficacy, we mention the theory of economic growth,
see, for example, [4].

In the present paper our aim is to bring up multiplicative calculus to the atten-
tion of researchers in the branch of positive approximation processes. We could find
no references that treat any kind of multiplicative calculus to the above mentioned
directions.

In the next two sections we present basic elements of multiplicative calculus
and new results as regards the positive approximation processes. A particular case is
treated at the end of the paper.

2. Preliminaries

We introduce the second central moment of Ln, n ∈ N, operators, i.e.,

M2(Ln;x) := (Lnϕ
2
x)(x), where ϕx(t) = |t− x|,

(t, x) ∈ [0, 1] × [0, 1]. Taking into account Bohman-Korovkin criterion, since (1.3) is
fulfilled, in order the sequence (Ln)n≥1 to become an approximation process on the
space C([0, 1]), it is necessary and sufficient to take place the following relation

lim
n→∞

M2(Ln;x) = 0, uniformly in x ∈ [0, 1]. (2.1)

We also consider that this identity is achieved.
Set R∗+ = (0,∞). Also, B+([0, 1]) stands for all strictly positive real valued

functions defined on [0, 1] and

C+([0, 1]) = {f ∈ B+([0, 1]) : f continuous on [0, 1]}.
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We collected some information about multiplicative calculus. Here, the symbol
	 represents the difference in non-Newtonian geometric calculus which means the
division in the classical calculus. Consequently, a 	 b means a/b, provided that a/b
makes sense.

In non-Newtonian geometric calculus, the multiplicative absolute value (or
modulus) of an element x ∈ (0,∞) be a number |x|∗ such that

|x|∗ =

 x , x > 1
1 , x = 1
1/x , x < 1.

Owing to the definition of multiplicative absolute value, the multiplicative distance
between two elements x, y ∈ (0,∞) is given by

|x	 y|∗ =

∣∣∣∣xy
∣∣∣∣∗ =

 x/y , x/y > 1
1 , x = y
y/x , x/y < 1.

From the definition of the multiplicative absolute value, it is obvious that |x|∗ ≥ 1 for
all x ∈ (0,∞) .

For a closed interval I ⊆ R, denoting {f | f : I → R∗+} = F+(I), we present the
following

Definition 2.1. A function f ∈ F+(I) is said to tend to the limit L > 0 as x tends to
a ∈ I, if, corresponding to any arbitrary chosen number ε > 1, there exists a positive
number δ > 1 such that

|f(x)	 L|∗ < ε,

for all values of x for which
1 < |x	 a|∗ < δ.

Here
1 < |x	 a|∗ < δ ⇐⇒ a

δ
< x < aδ

and

|f(x)	 L|∗ < ε⇐⇒ L

ε
≤ f(x) < Lε.

We use the notation lim
x→a

f(x)
m
= L or f(x)

m−→ L, x→ a.

Definition 2.2. A function f ∈ F+(I) is said to be multiplicative continuous at
x = a ∈ I, if

lim
x→a

f(x)
m
= f(a)

holds.
In other words, a function f ∈ F+(I) is said to be multiplicative continuous at

x = a ∈ I, if, corresponding to any arbitrary chosen number ε > 1, there exists a
positive number δ > 1 such that

|f(x)	 f(a)|∗ < ε,

for all values of x for which
|x	 a|∗ < δ.
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Similar to the classic modulus of smoothness, can be defined the modulus of
multiplicative smoothness.

Definition 2.3. Let I ⊆ R+ be an interval and f ∈ B+(I). The modulus of multiplica-
tive smoothness of f is denoted by ω〈m〉(f ; ·) and is defined as follows

ω〈m〉(f ; δ) = sup
1≤|x	t|≤δ
x,t∈I

|f(x)	 f(t)|∗ , δ ≥ 1. (2.2)

Remark 2.4. Examining relation (2.2) we deduce

i) ω〈m〉(f ; 1) = 1;

ii) if 1 ≤ δ1 < δ2, then ω〈m〉(f ; δ1) ≤ ω〈m〉(f ; δ2),
consequently ω〈m〉(f ; ·) is a non-decreasing function.

We associate to the operators defined by (1.2) with the fulfillment of hypotheses
(1.3) and (2.1), the following operators

(L〈m〉n f)(x) =

n∏
k=0

(f(kλn))ak(λn;x), x ∈ [0, 1], (2.3)

for each function f ∈ B+([0, 1]). This new class of operators loses the linearity pro-
perty.

We also notice that it keeps the constants. Indeed, by virtue of property (1.3),

if f(x) = c > 0, x ∈ [0, 1], then (L
〈m〉
n c)(x) = c, x ∈ [0, 1].

Further on, our goal is to highlight approximation properties of the sequence

(L
〈m〉
n )n≥1.

3. Results

Theorem 3.1. Let f ∈ B+([0, 1]) and the operators L
〈m〉
n , n ∈ N, be defined by (2.3).

The following relation

lim
n→∞

(L〈m〉n f)(x0)
m
= f(x0) (3.1)

holds at each point x0 ∈ (0, 1] of multiplicative continuity of f .

Proof. Let ε > 1 be arbitrarily fixed. In order to prove the theorem we have to show∣∣∣(L〈m〉n f)(x0)	 f(x0)
∣∣∣∗ < ε

holds true at each point x0 ∈ (0, 1] of multiplicative continuity of f ∈ B+([0, 1]).
If f ∈ B+([0, 1]) is a constant function then one has

(L〈m〉n f)(x0) = f(x0),

and hence ∣∣∣(L〈m〉n f)(x0)	 f(x0)
∣∣∣∗ = 1 < ε

holds true at every point x0 ∈ (0, 1]. This proves (3.1) for constant functions.
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Now, we assume that f ∈ B+([0, 1]) is not a constant function. Since the multi-
plicative absolute value is always greater than or equal to 1

(
|•|∗ ≥ 1

)
, it is sufficient

only to show that the inequality∣∣∣(L〈m〉n f)(x0)	 f(x0)
∣∣∣∗ < ε (3.2)

is valid for n ≥ N , N being a certain rank. By using (2.3) and (1.3) we can write∣∣∣(L〈m〉n f)(x0)	 f(x0)
∣∣∣∗ =

∣∣∣∣∣
n∏
k=0

(
f(kλn)

f(x0)

)ak(λn;x0)
∣∣∣∣∣
∗

. (3.3)

Since lim
x→x0

f(x)
m
= f(x0), in accordance with Definition 2.2, there exists a positive

number δ > 1 such that

|f(x)	 f(x0)|∗ < ε, (3.4)

for all values of x for which

|x	 x0|∗ < δ. (3.5)

We split up the set J = {0, 1, . . . , n} as follows

J0 = {0} ,
J1 = {k ∈ J\J0 : |kλn 	 x0|∗ < δ},
J2 = {k ∈ J\J0 : |kλn 	 x0|∗ ≥ δ}.

Returning at (3.2) we break down the product as follows∣∣∣∣∣
n∏
k=0

(
f(kλn)

f(x0)

)ak(λn;x0)
∣∣∣∣∣
∗

(3.6)

≤
(∣∣∣∣ f(0)

f(x0)

∣∣∣∣∗)a0(λn;x0) ∏
k∈J1

(∣∣∣∣f(kλn)

f(x0)

∣∣∣∣∗)ak(λn;x0) ∏
k∈J2

(∣∣∣∣f(kλn)

f(x0)

∣∣∣∣∗)ak(λn;x0)

.

The first product can be increased in the following way∏
k∈J1

(∣∣∣∣f(kλn)

f(x0)

∣∣∣∣∗)ak(λn;x0)

< ε

∑
k∈J1

ak(λn;x0)

≤ ε,

see (3.3) and (1.3). The relation k ∈ J0 ∪ J2 involves∑
k∈J0∪J2

ak(λn;x0) ≤
∑

k∈J0∪J2

(kλn − x0)2

δ2
ak(λn;x0)

≤ 1

δ2

n∑
k=0

(kλn − x0)2ak(λn;x0)

=
1

δ2
M2(Ln;x0). (3.7)

Based on (2.1), for any µ > 0, there exists a rank N ∈ N such that

M2(Ln;x0) < µ, for every n ≥ N. (3.8)
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Setting

sup
x∈[0,1]

∣∣∣∣ f(x)

f(x0)

∣∣∣∣∗ = M, (3.9)

we can evaluate the last part from (3.6)

∏
k∈J0∪J2

(∣∣∣∣f(kλn)

f(x0)

∣∣∣∣∗)ak(λn;x0)

≤M
∑

k∈J0∪J2

(λn;x0)

≤Mµ/δ2 , n ≥ N, (3.10)

see (3.7) and (3.8). Returning at (3.6), we get

∀ µ > 0, ∃ N ∈ N, ∀ n ≥ N,
n∏
k=0

∣∣∣∣f(kλn)

f(x0)

∣∣∣∣ak(λn;x0)

< εMµ/δ2 .

If M = 1, then we obtain exactly the inequality (3.2). Otherwise (M > 1), choosing
µ = δ2 logM ε > 0, we obtain the same inequality from (3.2) with ε := ε2 which does
not alter the statement.

In this moment, the proof of (3.2) is completed, consequently (3.1) takes place. �
Next, we establish an upper bound of the error of approximation by using the

modulus of multiplicative smoothness.

Theorem 3.2. Let f ∈ B+([0, 1]) and the operators L
〈m〉
n , n ∈ N, be defined by (2.3).

For n large enough, the following relation∣∣∣(L〈m〉n f)(x)	 f(x0)
∣∣∣∗ ≤Mω〈m〉(f ; δ), δ ≥ 1, (3.11)

holds at each point x0 ∈ (0, 1] of multiplicative continuity of f . The constant M is
defined at (3.9).

Proof. We use the identity (3.3) and the decomposition of that product according
to the relation (3.6). Based both on the definition of ω〈m〉(f ; ·), see (2.2), and the
inequalities set out in (3.10) that are valid for any µ > 0 and n sufficiently large, we
can write∣∣∣(L〈m〉n f)(x0)	 f(x0)

∣∣∣∗ ≤
 ∏
|kλn	x0|∗≤δ

ω〈m〉(f ; δ)ak(λn;x0)

Mµ/δ2

≤Mµ/δ2ω〈m〉(f ; δ).

Choosing µ = δ2, we obtain the desired result. �

4. A special case

In this section, we give a particular example of operators satisfying the assump-
tions employed in the previous sections.
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4.1. Multiplicative (geometric) Bernstein operators

By choosing λn = 1
n , ak(λn;x) = pn,k(x), where pn,k(x) =

(
n
k

)
xk(1− x)n−k

is the Bernstein basis, then we obtain a special case of the operators (2.3), namely mul-
tiplicative (geometric) version of the celebrated Bernstein operators. More precisely,

B
〈m〉
n : B+[0, 1]→ C+[0, 1] (n ≥ 1) is given by

(
B〈m〉n f

)
(x) =

n∏
k=0

[
f

(
k

n

)]pn,k(x)

, x ∈ [0, 1]. (4.1)

As a consequence of Theorem 3.1 for functions f ∈ B+([0, 1]) and for multiplica-

tive (geometric) Bernstein operators B
〈m〉
n , we have the following direct estimate:

Corollary 4.1. Let f ∈ B+([0, 1]) be a function. Let the operators B
〈m〉
n , n ∈ N, be

defined by (4.1). The following relation

lim
n→∞

(B〈m〉n f)(x0)
m
= f(x0)

holds at each point x0 ∈ (0, 1] of multiplicative continuity of f .

4.2. Graphical and Numerical Representations

In the recent period, many operators have been investigated that generalize the
classical approximation operators and the theoretical approach is usually accompa-
nied by illustrations of convergence properties of particular functions. The included
graphics are realized using software programs. Among such papers, we randomly quote
[3], [7], [2], [6], the last three appeared in the years 2019-2020.

Following this line, we give some graphical and numerical examples to illustrate
the approximation results for multiplicative (geometric) Bernstein operators obtained
in the present paper.

We note that in the Figures 1, 2 and 3, the graph with the red line belongs to
the original function, the graph with the green line to the operators with n = 2, and
finally the graph consisting of blue line to the operators with n = 10.

Example 4.2. Let us consider the function f(x) = x3+1, and we take its corresponding

multiplicative Bernstein operator (B
〈m〉
n f) (x) (4.1), that one has for n = 2 and for

n = 10.
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Figure 1. Approximation of f(x) = x3 + 1 by multiplicative Bern-
stein operators (4.1), for n = 2 and n = 10.

In the following tables, by using the Wolfram Mathematica 11 Program, we
compute the error of approximation numerically at certain points for n = 100, 300
and 500;

x = 0.2 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.2) 1.00896 1.00832 1.00819

f(0.2) 1.008 1.008 1.008
The Error 0.000955622 0.000316981 0.000189999 ,

x = 0.5 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.5) 1.12811 1.12604 1.12562

f(0.5) 1.125 1.125 1.125
The Error 0.00310983 0.00103996 0.000624384 ,

and finally

x = 0.8 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.8) 1.5139 1.51263 1.51238

f(0.8) 1.512 1.512 1.512
The Error 0.00189809 0.000630805 0.000378252 .

Example 4.3. Let us consider the function f(x) = sin(x + 1), and we take its corre-

sponding multiplicative Bernstein operator (B
〈m〉
n f) (x) (4.1), that one has for n = 2

and for n = 10.
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Figure 2. Approximation of f(x) = sin(x + 1) by multiplicative
Bernstein operators (4.1), for n = 2 and n = 10.

In the following tables, we compute the error of approximation numerically at
certain points for n = 100, 300 and 500;

x = 0.2 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.2) 0.931181 0.931753 0.931867

f(0.2) 0.932039 0.932039 0.932039
The Error 0.000857595 0.000286029 0.000171637 ,

x = 0.5 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.5) 0.996241 0.997077 0.997244

f(0.5) 0.997495 0.997495 0.997495
The Error 0.00125394 0.000417802 0.00025066 ,

and finally

x = 0.8 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.8) 0.973026 0.973574 0.973683

f(0.8) 0.973848 0.973848 0.973848
The Error 0.000821133 0.000273789 0.000164283

Example 4.4. Let us consider the function f(x) = sinx + 1, and we take its corre-

sponding multiplicative Bernstein operator (B
〈m〉
n f) (x) (4.1), that one has for n = 2

and for n = 10.
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Figure 3. Approximation of f(x) = sinx+1 by multiplicative Bern-
stein operators (4.1), for n = 2 and n = 10.

In the following tables, we compute the error of approximation numerically at
certain points for n = 100, 300 and 500;

x = 0.2 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.2) 1.19787 1.1984 1.19851

f(0.2) 1.19867 1.19867 1.19867
The Error 0.000798903 0.000266545 0.000159956 ,

x = 0.5 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.5) 1.47818 1.47901 1.47918

f(0.5) 1.47943 1.47943 1.47943
The Error 0.00125027 0.000416697 0.000250011 ,

and finally

x = 0.8 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.8) 1.71656 1.71709 1.7172

f(0.8) 1.71736 1.71736 1.71736
The Error 0.000800703 0.000266745 0.000160028

Remark 4.5. Unlike error evaluation for linear and positive operators, from (3.11)

we cannot deduce the convergence property of the sequence (L
〈m〉
n f)n≥1 to f . This

note should be regarded as a pioneering activity in order to introduce multiplicative
calculus in the field promoted by Korovkin type theory.
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