Hybrid conjugate gradient-BFGS methods based on Wolfe line search

Khelladi Samia, Benterki Djamel


In this paper, we present some hybrid methods for solving unconstrained optimization problems. These methods are defined using proper combinations of the search directions and included parameters in conjugate gradient and quasi-Newton method of Broyden--Fletcher--Goldfarb--Shanno (CG-BFGS). Their global convergence under the Wolfe line search is analyzed for general objective functions. Numerical experiments show the superiority of the modified hybrid (CG-BFGS) method with respect to some existing methods.


Unconstrained optimization, Global convergence, Conjugate gradient methods, Quasi-Newton methods, Wolfe line search.

Full Text:



bibitem{BSA2017} Baluch, B., Salleh, Z., Alhawarat, A., Roslan, U.A.M., emph{A

new modified three-term conjugate gradient method with sufficient descent

property and its global convergence}, J. Math. (2017), Article ID 2715854, 12


bibitem{BN89} Byrd, R. H., Nocedal, J., emph{A tool for the analysis of

quasi-Newton methods with application to unconstrained minimization}, SIAM J.

Numer. Anal., textbf{26}(1989), no. 3, 727-739.

bibitem{DL2001} Dai, Y.H., Liao, L.Z., emph{New conjugacy conditions and related nonlinear conjugate gradient methods}, Appl. Math. Optim., textbf{43}(2001), no. 1, 87-101.

bibitem{DY2001} Dai, Y.H., Yuan, Y., emph{An efficient hybrid conjugate gradient method for unconstrained optimization}, Ann. Oper. Res., textbf{103}(2001), 33-47.

bibitem{DY99} Dai, Y.H., Yuan, Y., emph{A nonlinear conjugate gradient method

with a strong global convergence property}, SIAM J. Optim., textbf{10}(1999), no. 1, 177-182.

bibitem{F87} Fletcher, R., emph{Practical Methods of Optimization. Unconstrained Optimization}, vol. 1. Wiley New York, 1987.

bibitem{FR64} Fletcher, R., Reeves, C.M., emph{Function minimization by

conjugate gradients}, Comput. J., textbf{7}(1964), no. 2, 149-154.

bibitem{GN92} Gilbert, J.C., Nocedal, J., emph{Global convergence properties of

conjugate gradient methods for optimization}, SIAM J. Optim., textbf{2}(1992), no. 1, 21-42.

bibitem{HS52} Hestenes, M.R., Stiefel, E.L., emph{Methods of conjugate gradients for solving linear systems}, J. Res. Natl. Bur. Stand., textbf{49}(1952), no. 6, 409-436.

bibitem{I2014} Ibrahim, M.A.H., Mamat, M., Leong, W.J., emph{The hybrid BFGS-CG

method in solving unconstrained optimization problems}, In: Abstract and

Applied Analysis (2014). Hindawi Publishing Corporation. Article ID 507102, 6


bibitem{KH2017} Khanaiah, Z., Hmod, G., emph{Novel hybrid algorithm in solving

unconstrained optimizations problems}, Int. J. Novel Res. Phys. Chem. Math.,

textbf{4}(2017), no. 3, 36-42.

bibitem{LS91} Liu, Y., Storey, C., emph{Efficient generalized conjugate gradient

algorithms, part 1: theory}, J. Optim. Theory Appl., textbf{69}(1991), no. 1, 129-137.

bibitem{OI2017} Osman, W.F.H.W., Ibrahim, M.A.H., Mamat, M., emph{Hybrid DFP-CG

method for solving unconstrained optimization problems}, J. Phys. Conf. Ser.

(2017), 012033.

bibitem{PR69} Polak, E., Ribiere, G., emph{Note sur la convergence des m'ethodes

de directions conjugu'{e}es}, Rev. Franc {c}aise d'Informatique et de Recherche Op'erationnelle

textbf{3}(1969), no. R1, 35-43.

bibitem{P69} Polyak, B.T., emph{The conjugate gradient method in extreme

problems}, U.S.S.R. Comput. Math. Phys., textbf{9}(1969), 94-112.

bibitem{SB2018} Stanimirovi'{c}, P. S., Ivanov, B., Djordjevi'{c}, S.,

Brajevi'{c}, I., emph{New Hybrid Conjugate Gradient and

Broyden--Fletcher--Goldfarb--Shanno Conjugate Gradient Methods}, J.

Optim. Theory Appl., textbf{178}(2018), no. 3, 860-884.

bibitem{T90} Touati-Ahmed, D., Storey, C., emph{Efficient hybrid conjugate

gradient techniques}, J. Optim. Theory Appl., textbf{64}(1990), no. 2, 379-397.

bibitem{Z2006} Zhang, L., emph{Nonlinear Conjugate Gradient Methods for

Optimization Problems}, Ph.D. Thesis, College of Mathematics and

Econometrics, Hunan University, Changsha China, 2006.

bibitem{ZZ2008} Zhang, L., Zhou, W., emph{Two descent hybrid conjugate gradient

methods for optimization}, J. Comput. Appl. Math., textbf{216}(2008), 251-264.

bibitem{ZZ2006} Zhang, L., Zhou, W.J., Li, D.H., emph{Global convergence of a

modified Fletcher--Reeves conjugate method with Armijo-type line search},

Numer. Math., textbf{104}(2006), 561-572.

bibitem{ZH17} Zheng, Y., Zheng, B., emph{Two new Dai-Liao-type conjugate

gradient methods for unconstrained optimization problems}, J. Optim. Theory

Appl., textbf{175}(2017), 502-509.

bibitem{ZT70} Zoutendijk, G., emph{Nonlinear programming, computational methods}, In: Abadie, J. (ed.) Integer and Nonlinear Programming, (1970), 37-86.

bibitem{YL2013} Yang, X., Luo, Z., Dai, X., emph{A global convergence of LS-CD

hybrid conjugate gradient method}, In:Advances in Numerical Analysis (2013).

Hindawi Publishing Corporation, Article ID 517452, 5 pp.

DOI: http://dx.doi.org/10.24193/subbmath.2022.4.14


  • There are currently no refbacks.