Coefficient estimates for a subclass of analytic functions by Srivastava-Attiya operator

Mostafa Jafari, Ahmad Motamednezad and Ebrahim Analouei Adegani

Abstract. In this paper, we investigate bounds of the coefficients for subclass of analytic and bi-univalent functions. The results presented in this paper would generalize and improve some recent works and other authors.

Mathematics Subject Classification (2010): 30C45, 30C50.

Keywords: Analytic functions, bi-univalent functions, coefficient estimates, Srivastava-Attiya operator, subordination.

1. Introduction

Let ${\mathcal A}$ be a class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Further, let \mathcal{S} denote the class of functions $f \in \mathcal{A}$ which are univalent in \mathbb{U} .

For f(z) defined by (1.1) and h(z) defined by

$$h(z) = z + \sum_{n=2}^{\infty} b_n z^n,$$

the Hadamard product (f * h)(z) of the functions f(z) and h(z) defined by

$$(f * h)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n,$$

In 2007, Srivastava and Attiya [21] (see also Răducanu and Srivastava [18] and Prajapat and Goyal [17]) for the class \mathcal{A} introduced and investigated linear operator

Received 19 December 2019; Accepted 08 January 2020.

 $\mathcal{J}^b_\mu: \mathcal{A} \to \mathcal{A}$ that defined in terms of the Hadamard product by

$$\mathcal{J}^b_\mu f(z) = z + \sum_{k=2}^\infty \Theta_k a_k z^k,$$

where

$$\Theta_k = \left| \left(\frac{1+b}{k+b} \right)^{\mu} \right|,\,$$

and (throughout this paper unless otherwise mentioned) the parameters μ , b are considered as $\mu \in \mathbb{C}$ and $b \in \mathbb{C} \setminus \{0, -1, -2, \cdots\}$, (see for more details [20]).

Remark 1.1. (1) For $\mu = 1$ and b = v (v > -1), we get generalized Libera-Bernardi integral operator [19];

(2) For $\mu = \sigma$ ($\sigma > 0$) and b = 1, we get Jung-Kim-Srivastava integral operator [12].

For each $f \in S$, the Koebe one-quarter theorem [9] ensures that the image of \mathbb{U} under f contains a disk of radius $\frac{1}{4}$. Hence every function $f \in S$ has an inverse f^{-1} , which is defined by

$$f^{-1}(f(z)) = z \qquad (z \in \mathbb{U}),$$

and

$$f(f^{-1}(w)) = w$$
 $\left(|w| < r_0(f); r_0(f) \ge \frac{1}{4} \right),$

where

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 + \cdots$$
 (1.2)

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U} . Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1.1).

Recently many researchers have introduced and investigated several interesting subclasses of the bi-univalent function class Σ and they have found non-sharp estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ and other problems, see for example, [3, 2, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 22, 23, 24].

For two functions f and g that are analytic in \mathbb{U} , we say that the function f is subordinate to g and write $f(z) \prec g(z)$, if there exists a Schwarz function ω , that is analytic in \mathbb{U} with $\omega(0) = 0$ and $|\omega(z)| < 1$ such that $f(z) = g(\omega(z))$ for all $z \in \mathbb{U}$.

In particular, if the function g is univalent in \mathbb{U} , then $f(z) \prec g(z)$ if and only if f(0) = g(0) and $f(\mathbb{U}) \subseteq g(\mathbb{U})$.

In this work, we obtain estimates of coefficients for a subclass of bi-univalent functions considered by Selvaraj et al. [20]. The results presented in this paper would generalize and improve some recent works and other authors.

2. The subclass $\mathcal{S}_{\Sigma,t}^{\mu,b}(\gamma,\lambda,\phi)$

Throughout this paper, we assume that ϕ is an analytic function with positive real part in the unit disk U, satisfying $\phi(0) = 1$, $\phi'(0) > 0$ and symmetric with respect to the real axis. Such a function has series expansion of the form

$$\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots \quad (B_1 > 0), \tag{2.1}$$

Let that u(z) and v(z) are Schwarz function in \mathbb{U} with

$$u(0) = v(0) = 0, |u(z)| < 1, |v(z)| < 1$$

and suppose that

$$u(z) = \sum_{n=1}^{\infty} p_n z^n \quad \text{and} \quad v(z) = \sum_{n=1}^{\infty} q_n z^n \quad (z \in \mathbb{U}).$$
(2.2)

Then [16, p. 172]

$$|p_1| \le 1, \quad |p_2| \le 1 - |p_1|^2, \quad |q_1| \le 1, \quad |q_2| \le 1 - |q_1|^2.$$
 (2.3)

By (2.1), we get

$$\phi(u(z)) = 1 + B_1 p_1 z + (B_1 p_2 + B_2 p_1^2) z^2 + \cdots \quad (z \in \mathbb{U})$$
(2.4)

and

$$\phi(v(w)) = 1 + B_1 q_1 w + (B_1 q_2 + B_2 q_1^2) w^2 + \cdots \quad (w \in \mathbb{U}).$$
(2.5)

In 2014, Selvaraj et al. [20] introduced subclass of Σ and obtained estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in this subclass as follows:

Definition 2.1. [20] A function $f \in \Sigma$ given by (1.1) is said to be in the class $S_{\Sigma,t}^{\mu,b}(\gamma,\lambda,\phi)$ if the following conditions are satisfied:

$$1 + \frac{1}{\gamma} \left(\frac{[(1-t)z]^{1-\lambda} (\mathcal{J}^b_\mu f(z))'}{[\mathcal{J}^b_\mu f(z) - \mathcal{J}^b_\mu f(tz)]^{1-\lambda}} - 1 \right) \prec \phi(z),$$

and

$$1 + \frac{1}{\gamma} \left(\frac{[(1-t)w]^{1-\lambda} (\mathcal{J}^b_\mu g(w))'}{[\mathcal{J}^b_\mu g(w) - \mathcal{J}^b_\mu g(tw)]^{1-\lambda}} - 1 \right) \prec \phi(w),$$

where $|t| \leq 1$ $(t \neq 1); \ \gamma \in \mathbb{C} \setminus \{0\}; \ \lambda \geq 0; \ z, w \in \mathbb{U} \text{ and } g \text{ is given by (1.2)}.$

Theorem 2.2. [20] Let the function f(z) given by (1.1) be in the class $\mathcal{S}_{\Sigma,t}^{\mu,b}(\gamma,\lambda,\phi)$. Then

$$|a_2| \leq \frac{|\gamma|B_1\sqrt{2B_1}}{\sqrt{|\gamma B_1^2 \Lambda(\lambda, t)\Xi(\lambda, t) - 2(B_2 - B_1)[\Lambda(\lambda, t) + 2]^2\Theta_2^2 + 2\gamma B_1^2\Upsilon(\lambda, t)\Theta_3|}}$$
(2.6)

and

$$|a_3| \le \frac{B_1|\gamma|}{\Upsilon(\lambda, t)\Theta_3} + \left(\frac{B_1|\tau|}{[\Lambda(\lambda, t) + 2]\Theta_2}\right)^2, \tag{2.7}$$

where

$$\Lambda(\lambda, t) = (\lambda - 1)(1 + t), \ \Upsilon(\lambda, t) = [(\lambda - 1)(1 + t + t^2) + 3]$$

and

$$\Xi(\lambda, t) = [(\lambda - 2)(1 + t) + 4].$$

3. Coefficient estimates

In the section, we get that the following theorem which is an refinement of inequalities (2.6) and (2.7).

Theorem 3.1. Let the function f(z) given by (1.1) be in the class $\mathcal{S}_{\Sigma,t}^{\mu,b}(\gamma,\lambda,\phi)$, $|t| \leq 1$ $(t \neq 1), \gamma \in \mathbb{C} \setminus \{0\}$ and $\lambda \geq 0$. Then

$$|a_2| \leq \frac{|\gamma|B_1\sqrt{2B_1}}{\sqrt{2B_1[\Lambda(\lambda,t)+2]^2\Theta_2^2+|\gamma B_1^2\Lambda(\lambda,t)\Xi(\lambda,t)-2B_2[\Lambda(\lambda,t)+2]^2\Theta_2^2+2\gamma B_1^2\Upsilon(\lambda,t)\Theta_3]}}$$

and
$$\int_{\mathbb{T}^2} |B_1| = \frac{|\gamma|B_1\sqrt{2B_1}}{|\gamma|B_1} + \frac{|\gamma|B_1}{|\gamma|B_1} +$$

$$|a_{3}| \leq \begin{cases} \frac{|\tau|B_{1}}{\Upsilon(\lambda,t)\Theta_{3}} & B_{1} \leq \frac{[(\lambda-1)(1+t)+2]^{2}\Theta_{2}^{2}}{|\gamma|\Theta_{3}[(\lambda-1)(1+t+t^{2})+3]} \\ \frac{\Phi(\Theta_{1},\Theta_{2},\lambda,t)}{\Psi(\Theta_{1},\Theta_{2},\lambda,t)\Upsilon(\lambda,t)\Theta_{3}} & B_{1} > \frac{[(\lambda-1)(1+t)+2]^{2}\Theta_{2}^{2}}{|\gamma|\Theta_{3}[(\lambda-1)(1+t+t^{2})+3]}. \end{cases}$$

where

$$\begin{split} \Phi(\Theta_1,\Theta_2,\lambda,t) = &|\tau|B_1 \left|\gamma B_1^2 \Lambda(\lambda,t) \Xi(\lambda,t) - 2B_2 [\Lambda(\lambda,t)+2]^2 \Theta_2^2 + 2\gamma B_1^2 \Upsilon(\lambda,t) \Theta_3 \right| \\ &+ 2|\gamma|^2 \Theta_3 \Upsilon(\lambda,t) B_1^3, \end{split}$$

and

$$\begin{split} \Psi(\Theta_1,\Theta_2,\lambda,t) = & 2B_1[\Lambda(\lambda,t)+2]^2\Theta_2^2 \\ &+ |\gamma B_1^2\Lambda(\lambda,t)\Xi(\lambda,t)-2B_2[\Lambda(\lambda,t)+2]^2\Theta_2^2 + 2\gamma B_1^2\Upsilon(\lambda,t)\Theta_3|. \end{split}$$

Proof. Let $f \in S_{\Sigma,t}^{\mu,b}(\gamma,\lambda,\phi)$ and $g = f^{-1}$. Then there are analytic functions $u, v : \mathbb{U} \to \mathbb{U}$, with u(0) = v(0) = 0, given by (2.2) such that

$$1 + \frac{1}{\gamma} \left(\frac{[(1-t)z]^{1-\lambda} (\mathcal{J}^b_\mu f(z))'}{[\mathcal{J}^b_\mu f(z) - \mathcal{J}^b_\mu f(tz)]^{1-\lambda}} - 1 \right) = \phi(u(z)),$$
(3.1)

and

$$1 + \frac{1}{\gamma} \left(\frac{[(1-t)w]^{1-\lambda} (\mathcal{J}^b_\mu g(w))'}{[\mathcal{J}^b_\mu g(w) - \mathcal{J}^b_\mu g(tw)]^{1-\lambda}} - 1 \right) = \phi(v(w)).$$
(3.2)

From (2.4), (2.5), (3.1) and (3.2), we obtain

$$[(\lambda - 1)(1 + t) + 2]\Theta_2 a_2 = \gamma B_1 p_1, \tag{3.3}$$

$$[(\lambda - 1)(1 + t + t^2) + 3]\Theta_3 a_3 + \frac{1}{2}(\lambda - 1)(1 + t)[(\lambda - 2)(1 + t) + 4]\Theta_2^2 a_2^2$$

= $\gamma [B_1 p_2 + B_2 p_1^2],$ (3.4)

$$-[(\lambda - 1)(1+t) + 2]\Theta_2 a_2 = \gamma B_1 q_1, \qquad (3.5)$$

and

$$[(\lambda - 1)(1 + t + t^{2}) + 3]\Theta_{3}(2a_{2}^{2} - a_{3}) + \frac{1}{2}(\lambda - 1)(1 + t)[(\lambda - 2)(1 + t) + 4]\Theta_{2}^{2}a_{2}^{2} = \gamma[B_{1}q_{2} + B_{2}q_{1}^{2}].$$
(3.6)

From (3.3) and (3.5), we get

$$p_1 = -q_1. (3.7)$$

Adding (3.4) and (3.6), and using (3.7), we have

$$\left((\lambda - 1)(1+t)[(\lambda - 2)(1+t) + 4]\Theta_2^2 + 2\Theta_3[(\lambda - 1)(1+t+t^2) + 3] \right) a_2^2 - 2\gamma B_2 p_1^2 = \gamma B_1(p_2 + q_2).$$
(3.8)

From (3.3), we have

$$\begin{split} & \left(\gamma B_1^2 \{ (\lambda-1)(1+t)[(\lambda-2)(1+t)+4]\Theta_2^2+2\Theta_3[(\lambda-1)(1+t+t^2)+3] \right\} \\ & -2B_2[(\lambda-1)(1+t)+2]^2\Theta_2^2)a_2^2 = \gamma^2 B_1^3(p_2+q_2). \end{split}$$

By (2.3) and (3.3), we get

$$\begin{split} &|\left(\gamma B_1^2 \{(\lambda - 1)(1 + t)[(\lambda - 2)(1 + t) + 4]\Theta_2^2 + 2\Theta_3[(\lambda - 1)(1 + t + t^2) + 3]\right\} \\ &- 2B_2[(\lambda - 1)(1 + t) + 2]^2\Theta_2^2)a_2^2| \le |\tau|^2 B_1^3(|p_2| + |q_2|) \\ &\le 2|\gamma|^2 B_1^3(1 - |p_1|^2) \\ &= 2|\gamma|^2 B_1^3 - 2B_1[(\lambda - 1)(1 + t) + 2]^2\Theta_2^2|a_2|^2. \end{split}$$

Therefore,

$$\begin{aligned} |a_2| &\leq \tag{3.9} \\ &\leq \frac{|\gamma|B_1\sqrt{2B_1}}{\sqrt{2B_1[\Lambda(\lambda,t)+2]^2\Theta_2^2 + |\gamma B_1^2\Lambda(\lambda,t)\Xi(\lambda,t)-2B_2[\Lambda(\lambda,t)+2]^2\Theta_2^2 + 2\gamma B_1^2\Upsilon(\lambda,t)\Theta_3]}}, \end{aligned}$$

whe

$$\Lambda(\lambda, t) = (\lambda - 1)(1 + t), \ \Upsilon(\lambda, t) = [(\lambda - 1)(1 + t + t^2) + 3]$$

and

$$\Xi(\lambda, t) = [(\lambda - 2)(1 + t) + 4].$$

Next, in order to find the bound on the coefficient $|a_3|$, by subtracting (3.6) from (3.4), and using (3.7), we get

$$2[(\lambda - 1)(1 + t + t^{2}) + 3]\Theta_{3}a_{3} = 2\Theta_{3}[(\lambda - 1)(1 + t + t^{2}) + 3]a_{2}^{2} + \tau B_{1}(p_{2} - q_{2}).$$
(3.10)

Using (2.3) and (3.7), we have

$$2[(\lambda - 1)(1 + t + t^{2}) + 3]\Theta_{3}|a_{3}|$$

$$\leq |\gamma|B_{1}(|p_{2}| + |q_{2}|) + 2\Theta_{3}[(\lambda - 1)(1 + t + t^{2}) + 3]|a_{2}|^{2}$$

$$\leq 2|\gamma|B_{1}(1 - |p_{1}|^{2}) + 2\Theta_{3}[(\lambda - 1)(1 + t + t^{2}) + 3]|a_{2}|^{2}.$$

743

From (3.3), we get

$$\begin{aligned} &|\gamma|B_1[(\lambda-1)(1+t+t^2)+3]\Theta_3|a_3|\\ &\leq \left[|\gamma|\Theta_3[(\lambda-1)(1+t+t^2)+3]B_1-[(\lambda-1)(1+t)+2]^2\Theta_2^2\right]|a_2|^2+|\gamma|^2B_1^2. \end{aligned}$$

From (3.9), for $[|\gamma|\Theta_3[(\lambda-1)(1+t+t^2)+3]B_1 - [(\lambda-1)(1+t)+2]^2\Theta_2^2] > 0$ we have

$$\begin{split} &|\gamma|B_{1}[(\lambda-1)(1+t+t^{2})+3]\Theta_{3}|a_{3}|\\ &\leq \left[|\gamma|\Theta_{3}[(\lambda-1)(1+t+t^{2})+3]B_{1}-[(\lambda-1)(1+t)+2]^{2}\Theta_{2}^{2}\right]\\ &\times \frac{2|\gamma|^{2}B_{1}^{3}}{2B_{1}[\Lambda(\lambda,t)+2]^{2}\Theta_{2}^{2}+|\gamma B_{1}^{2}\Lambda(\lambda,t)\Xi(\lambda,t)-2B_{2}[\Lambda(\lambda,t)+2]^{2}\Theta_{2}^{2}+2\gamma B_{1}^{2}\Upsilon(\lambda,t)\Theta_{3}|\\ &+|\gamma|^{2}B_{1}^{2}. \end{split}$$

Therefore,

$$\begin{aligned} |a_3| &\leq \left[|\gamma| \Theta_3[(\lambda - 1)(1 + t + t^2) + 3] B_1 - [(\lambda - 1)(1 + t) + 2]^2 \Theta_2^2 \right] \\ &\times \frac{2|\gamma| B_1^2}{\Psi(\Theta_1, \Theta_2, \lambda, t)[(\lambda - 1)(1 + t + t^2) + 3] \Theta_3} + \frac{|\gamma| B_1}{[(\lambda - 1)(1 + t + t^2) + 3] \Theta_3}, \end{aligned}$$

where

$$\begin{split} \Psi(\Theta_1,\Theta_2,\lambda,t) =& 2B_1[\Lambda(\lambda,t)+2]^2\Theta_2^2 \\ &+ |\gamma B_1^2\Lambda(\lambda,t)\Xi(\lambda,t) - 2B_2[\Lambda(\lambda,t)+2]^2\Theta_2^2 + 2\gamma B_1^2\Upsilon(\lambda,t)\Theta_3|, \end{split}$$

Consequently,

$$|a_{3}| \leq \begin{cases} \frac{|\gamma|B_{1}}{[(\lambda-1)(1+t+t^{2})+3]\Theta_{3}} & B_{1} \leq \frac{[(\lambda-1)(1+t)+2]^{2}\Theta_{2}^{2}}{|\gamma|\Theta_{3}[(\lambda-1)(1+t+t^{2})+3]} \\ \frac{\Phi(\Theta_{1},\Theta_{2},\lambda,t)}{\Psi(\Theta_{1},\Theta_{2},\lambda,t)[(\lambda-1)(1+t+t^{2})+3]\Theta_{3}} & B_{1} > \frac{[(\lambda-1)(1+t)+2]^{2}\Theta_{2}^{2}}{|\gamma|\Theta_{3}[(\lambda-1)(1+t+t^{2})+3]}, \end{cases}$$

where

$$\begin{split} \Phi(\Theta_1, \Theta_2, \lambda, t) &= |\tau| B_1 \left| \gamma B_1^2 \Lambda(\lambda, t) \Xi(\lambda, t) - 2B_2 [\Lambda(\lambda, t) + 2]^2 \Theta_2^2 + 2\gamma B_1^2 \Upsilon(\lambda, t) \Theta_3 \right| \\ &+ 2|\gamma|^2 \Theta_3 [(\lambda - 1)(1 + t + t^2) + 3] B_1^3. \end{split}$$

This completes the proof.

Remark 3.2. Theorem 3.1 is an improvement of the estimates obtained by Selvaraj et al. [20] in Theorem 2.2. For the coefficient $|a_2|$, it is clear that

$$\begin{split} & \frac{|\gamma|B_1\sqrt{2B_1}}{\sqrt{2B_1[\Lambda(\lambda,t)+2]^2\Theta_2^2+|\gamma B_1^2\Lambda(\lambda,t)\Xi(\lambda,t)-2B_2[\Lambda(\lambda,t)+2]^2\Theta_2^2+2\gamma B_1^2\Upsilon(\lambda,t)\Theta_3]}} \\ \leq & \frac{|\gamma|B_1\sqrt{2B_1}}{\sqrt{|\gamma B_1^2\Lambda(\lambda,t)\Xi(\lambda,t)-2(B_2-B_1)[\Lambda(\lambda,t)+2]^2\Theta_2^2+2\gamma B_1^2\Upsilon(\lambda,t)\Theta_3]}}. \end{split}$$

On the other hand, for the coefficient $|a_3|$, we make the following cases:

(i) For
$$B_1 \leq \frac{[(\lambda - 1)(1 + t) + 2]^2 \Theta_2^2}{|\gamma|\Theta_3[(\lambda - 1)(1 + t + t^2) + 3]}$$
, it is clear that

$$\frac{|\gamma|B_1}{\Upsilon(\lambda, t)\Theta_3} \leq \frac{B_1|\gamma|}{\Upsilon(\lambda, t)\Theta_3} + \left(\frac{B_1|\tau|}{[\Lambda(\lambda, t) + 2]\Theta_2}\right)^2.$$
(ii) For $B_1 > \frac{[(\lambda - 1)(1 + t) + 2]^2 \Theta_2^2}{|\gamma|\Theta_3[(\lambda - 1)(1 + t + t^2) + 3]}$, it is clear that

$$\frac{\Phi(\Theta_1, \Theta_2, \lambda, t)}{\Psi(\Theta_1, \Theta_2, \lambda, t)\Upsilon(\lambda, t)\Theta_3} \leq \frac{B_1|\gamma|}{\Upsilon(\lambda, t)\Theta_3} + \left(\frac{B_1|\tau|}{[\Lambda(\lambda, t) + 2]\Theta_2}\right)^2.$$

Remark 3.3. If we set $\lambda = 0$ in Theorem 3.1, then we get an improvement of the estimates obtained by Selvaraj et al. [20, Corollary 2.1].

Remark 3.4. If we set $\lambda = 1$ in Theorem 3.1, then we get an improvement of the estimates obtained by Selvaraj et al. [20, Corollary 2.2].

Remark 3.5. If $\mathcal{J}^b_{\mu} f(z)$ be the identity map and $\lambda = 0$ in Theorem 3.1, then we get an improvement of the estimates obtained by Selvaraj et al. [20, Corollary 2.3].

Remark 3.6. If $\mathcal{J}^b_{\mu} f(z)$ be the identity map and $\lambda = 1$ in Theorem 3.1, then we get an improvement of the estimates obtained by Selvaraj et al. [20, Corollary 2.4].

Remark 3.7. If $\mathcal{J}^b_{\mu} f(z)$ be the identity map and $\gamma = 1$, t = 0 in Theorem 3.1, then we get an improvement of the estimates obtained by Deniz [8, Theorem 2.8].

Remark 3.8. If $\mathcal{J}^b_{\mu} f(z)$ be the identity map and $\gamma = 1$, $\lambda = 1$ in Theorem 3.1 is an improvement of the estimates obtained by Ali et al. in [3, Theorem 2.1].

Remark 3.9. If we take

$$\phi(z) = \frac{1+Az}{1+Bz} = 1 + (A-B)z + (B-A)Bz^2 + \dots (-1 \le B < A \le 1, z \in \mathbb{U})$$

and

$$\varphi(z) = \left(\frac{1+z}{1-z}\right)^{\alpha} = 1 + 2\alpha z + 2\alpha^2 z^2 + \cdots \quad (0 < \alpha \le 1, \ z \in \mathbb{U}),$$

which gives $B_1 = A - B$, $B_2 = (B - A)B$ and $B_1 = 2\alpha$, $B_2 = 2\alpha^2$, in Theorem 3.1, then we can deduce interesting results analogous, respectively. Also, for suitable choices the parameter μ and b in Theorems 3.1 and some Remarks above we have an improvement of results involving Libera-Bernardi integral operator [19] and Jung-Kim-Srivastava integral operator [12].

Acknowledgments. The authors thank from the Najafabad Branch, Islamic Azad University for their financial support.

745

References

- Adegani, E.A., Bulut, S., Zireh, A., Coefficient estimates for a subclass of analytic biunivalent functions, Bull. Korean Math. Soc., 55(2018), 405-413.
- [2] Adegani, E.A., Cho, N.E., Motamednezhad, A., Jafari, M., Bi-univalent functions associated with Wright hypergeometric functions, J. Comput. Anal. Appl., 28(2020), 261-271.
- [3] Ali, R.M., Lee, S.K., Ravichandran, V., Subramaniam, S., Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(2012), 344-351.
- [4] Aouf, M.K., El-Ashwah, R.M., Abd-Eltawab, A.M., New subclasses of biunivalent functions involving Dziok-Srivastava operator, ISRN Math. Anal., (2013), Art. ID 387178.
- [5] Brannan, D.A., Taha, T.S., On some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai Math., 31(1986), 70-77.
- [6] Bulut, S., Coefficient estimates for a new subclass of analytic and bi-univalent functions defined by Hadamard product, J. Complex Anal., (2014), Art. ID 302019.
- [7] Çağlar, M., Orhan, H., Yağmur, N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27(2013), 1165-1171.
- [8] Deniz, E., Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2(2013), 49-60.
- [9] Duren, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
- [10] Frasin, B.A., Aouf, M.K., New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
- [11] Jafari, M., Bulboacă, T., Zireh, A., Adegani, E.A., Simple criteria for univalence and coefficient bounds for a certain subclass of analytic functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(2019), no. 1, 394-412.
- [12] Jung, I.B., Kim, Y.C., Srivastava, H.M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176(1993), 138-147.
- [13] Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
- [14] Motamednezhad, A., Bulboacă, T., Adegani, E. A., Dibagar, N., Second Hankel determinant for a subclass of analytic bi-univalent functions defined by subordination, Turk. J. Math., 42(2018), 2798-2808.
- [15] Murugusundaramoorthy, G., Bulboacă, T., Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions of complex order associated with the Hohlov operator, Ann. Univ. Paedagog. Crac. Stud. Math., 17 (2018), no. 1, 27-36.
- [16] Nehari, Z., Conformal Mapping, McGraw-Hill, New York, NY, USA, 1952.
- [17] Prajapat, J.K., Goyal, S.P., Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal., 3(2009), 129-137.
- [18] Răducanu, D., Srivastava, H.M., A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integr. Transf. Spec. funct., 18(2007), 933-943.
- [19] Reddy, G.L., Padmanaban, K.S., On analytic functions with reference to the Bernardi integral operator, Bull. Austral. Math. Soc., 25(1982), 387-396.

- [20] Selvaraj, C., Babu, O.S., Murugusundaramoorthy, G., Coefficient estimates of bi-Bazilevič functions of Sakaguchi type based on Srivastava-Attiya operator, FU Math. Inform., 29(2014), no. 1, 105-117.
- [21] Srivastava, H.M., Attiya, A., An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integr. Transf. Spec. funct., 18(2007), 207-216.
- [22] Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
- [23] Zireh, A., Adegani, E.A., Bidkham, M., Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasisubordinate, Math. Slovaca, 68(2018), 369-378.
- [24] Zireh, A., Adegani, E.A., Bulut, S., Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin, 23(2016), 487-504.

Mostafa Jafari Department of Mathematics, Najafabad Branch, Islamic Azad University Najafabad, Iran, (Corresponding author) e-mail: mostafajafari83@gmail.com

Ahmad Motamednezad Faculty of Mathematical Sciences, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran e-mail: a.motamedne@gmail.com

Ebrahim Analouei Adegani Faculty of Mathematical Sciences, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran e-mail: analoey.ebrahim@gmail.com