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Abstract. In this paper, we investigate bounds of the coefficients for subclass of
analytic and bi-univalent functions. The results presented in this paper would
generalize and improve some recent works and other authors.
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1. Introduction

Let A be a class of functions of the form
o0
f(Z) =z+ Z anz", (1.1)
n=2
which are analytic in the open unit disk U= {z € C: |z| < 1}. Further, let S denote

the class of functions f € A which are univalent in U.
For f(z) defined by (1.1) and h(z) defined by

h(z)=z+ Z bp2",
n=2
the Hadamard product (f % h)(z) of the functions f(z) and h(z) defined by
(f * h)(Z) =z+ Z anbpz",
n=2

In 2007, Srivastava and Attiya [21] (see also Raducanu and Srivastava [18] and
Prajapat and Goyal [17]) for the class A introduced and investigated linear operator
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J f : A — A that defined in terms of the Hadamard product by

Tof(z) =2+ Z Orayz”,

k=2

1+b\"
O = || ——
i ‘(k+b)
and (throughout this paper unless otherwise mentioned ) the parameters p, b are
considered as p € C and b € C\ {0,—1,-2,---}, (see for more details [20]).

where

)

Remark 1.1. (1) For g =1and b=wv (v > —1), we get generalized Libera-Bernardi
integral operator [19];
(2) For u =0 (o >0) and b = 1, we get Jung-Kim-Srivastava integral operator [12].

For each f € S, the Koebe one-quarter theorem [9] ensures that the image of U
under f contains a disk of radius %. Hence every function f € S has an inverse f1!,
which is defined by

FFHf@) =2 (z€U),

and
st =w (ol <rlinn = ).
where

g(w) = fHw) = w — agw? + (203 — az)w® +--- . (1.2)

A function f € A is said to be bi-univalent in U if both f and f~! are univalent in
U. Let ¥ denote the class of bi-univalent functions in U given by (1.1).

Recently many researchers have introduced and investigated several interesting
subclasses of the bi-univalent function class ¥ and they have found non-sharp esti-
mates on the first two Taylor-Maclaurin coefficients |as| and |as| and other problems,
see for example, [3, 2, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 22, 23, 24].

For two functions f and g that are analytic in U, we say that the function f is
subordinate to g and write f(z) < g(z), if there exists a Schwarz function w, that is
analytic in U with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)) for all z € U.

In particular, if the function g is univalent in U, then f(z) < g(z) if and only if
f(0) = g(0) and f(U) C g(U).

In this work, we obtain estimates of coefficients for a subclass of bi-univalent
functions considered by Selvaraj et al. [20]. The results presented in this paper would
generalize and improve some recent works and other authors.
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2. The subclass Sg:?(% )

Throughout this paper, we assume that ¢ is an analytic function with positive
real part in the unit disk U, satisfying ¢(0) = 1, ¢'(0) > 0 and symmetric with respect
to the real axis. Such a function has series expansion of the form

¢(z) =1+ Biz+ Bez® + Bsz* +--- (B; >0), (2.1)
Let that u(z) and v(z) are Schwarz function in U with
u(0) =v(0) =0, |u(z)| <1, jv(z)] <1
and suppose that

u(z) = ipnz” and wv(z) = i az" (2 €U). (2.2)
n=1 n=1

Then [16, p. 172]
pil <1, Ipel <1—p1if ol <1, Jgo <1 -] (2.3)

By (2.1), we get
d(u(z)) =1+ Bipiz + (Bip2 + Bop})z® + -+ (2 € U) (2.4)

and

d(v(w)) =1+ Bigrw + (B1ga + Bag})w? + -+ (w € U). (2.5)

In 2014, Selvaraj et al. [20] introduced subclass of ¥ and obtained estimates on the
coefficients |as| and |ag| for functions in this subclass as follows:

Definition 2.1. [20] A function f € ¥ given by (1.1) is said to be in the class
Sg:lt’(% A, ¢) if the following conditions are satisfied:

1 [(1 _t)z]l_/\(jﬁf(z))/ -
Tty ([J,i’ (2) = Thf(t2)]" > 1) = 9(2),
and
1 [(1 — t)’w}l*/\(jlljg(w))/ -
H v ([j,fg(w) — Jhg(tw)]i=> 1) < ¢(w),

where [t] <1 (t#1); v € C\{0}; A >0; z,w € U and g is given by (1.2).

Theorem 2.2. [20] Let the function f(z) given by (1.1) be in the class Sgilt’('y, A, 9).
Then

las| < |7/ B1v2B; (2.6)
~ VIYBIAMHEN, ) — 2(By — B1)[A(A, t) + 2203 + 2y BT (A, 1)Os]
and
Bily| By|7| ’
< .
sl < T ne; T\ auy £ 26 ) 27)

where
AN =N =10 +1t), TNt =[A=1)(1+t+1t2)+3]
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and
ENE) =[(A—=2) 1 +1t)+4].

3. Coefficient estimates

In the section, we get that the following theorem which is an refinement of
inequalities (2.6) and (2.7).

Theorem 3.1. Let the function f(z) given by (1.1) be in the class Sg:f(’y, A 9), [t <1
(t#1),ve€C\{0} and A\ > 0. Then

‘a2| < |’Y‘B1\/231
= V2BiAN D) + 27763 + 7BIA(N, OE(A, 1) — 2Ba[A(N,§) + 21708 + 29BIT (X, )03
and

7| B B < A=D1 +1)+27°63
T\ 1)O; L= 05 [(A= DA+t +2) + 3]
las] <
®(01,05, A\, 1) B (A= 1)(1 +1¢)+2]°03
U(01,02,1,1)T (), 1)O3 P es[(A - D)+t +2) + 3]
where

(01,02, \,t) =|7| By |yBI AN t)Z(A, t) — 2Ba[A(N, t) + 2203 + 27BI T (A, )O3
+ 24?03 (A, 1) B,
and
U(O1,0,,\,t) =2B1[A(\ 1) + 2]%03
+ [yBIAN, )ZE(N\, 1) — 2B2[A(\ 1) + 2]03 + 2yBIT(\, 1)03].

Proof. Let f € ng(’y,)\,d)) and g = f~!. Then there are analytic functions u,v :
U — U, with 4(0) = v(0) = 0, given by (2.2) such that

L0 0@y )
5 ([J:zﬂz) G 1) - o) o1
and
1 ([ =uw]" M Tpg(w))’ B
' ([Jﬁg(w) ~Thaltw) > 1) = ol 32)
From (2.4), (2.5), (3.1) and (3.2), we obtain
(A= 1)1 +1t) +2]O2a2 = vBip1, (3.3)

[(A—1)(1+t+t*) + 3]03a3 + %(A — 1)1+ H[(A—2)(1+1) +4)O03a3

=4[B1p2 + Bapi, (3.4)

= [(A=1)(1 + ) + 20202 = yBiq1, (3.5)
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and
[(A=1)(1+t+t°) + 3]03(2a3 — a3)

P3O0+ -2+ +43d =1 [Bip + Bodl.  (36)

From (3.3) and (3.5), we get
P1L=—q1. (3.7

Adding (3.4) and (3.6), and using (3.7), we have

(A=DA+HA=2) (1 +1) + 403 +203[(A — 1)(1 +t +°) +3]) a3

— 2yBop} = vBi(p2 + ¢2)- (3.8)
From (3.3), we have

(YBH{A =1 +8)[(A = 2)(1 + 1) + 4103 +203[(A — 1)(1 + t + £°) + 3]}

=2B5[(A = 1)(1+1) + 2°03)a3 = V2B (p2 + q2)-

By (2.3) and (3.
| (yBHOA = DA+ [N = 2)(1 +1#) +4]03 +205[(A = 1)(1 + ¢ +17) + 3]}
= 2B5[(A = 1)(1 + 1) + 2*©3)a3| < |7[*Bi(Ip2] + laz))

<2y[Bi(1 — |p]*)

=2]7|*B} — 2B1[(A = 1)(1 + t) + 2]*©3az|*.

3), we get

Therefore,
|az| < (3.9)
7| B1v2B1
\/231 (N 1) 4 2202 + [vBZA(N, HZ(A, t) — 2B2[A(N, ) + 2202 + 27 B2T (A, 1)O3]

where

AN =N =11 +1), T\t =[N =11+t +t%) +3]
and
) =[(A=2)(1+1t) +4].

Next, in order to find the bound on the coefficient |ag|, by subtracting (3.6) from
(3.4), and using (3.7), we get

2[(A = 1)(1 4+t +t°) + 3]O3a3 = 203[(A — 1)(1 + t + t*) + 3]a3
+ 7B1(p2 — q2)- (3.10)
Using (2.3) and (3.7), we have
2[(A = 1)(1 +t + %) + 3]O3]as|
< IBi(lp2| + lazl) +205[(A — 1)(1 + ¢ + %) + 3]|az|*
< 2|y[Bi(1 = [p1[?) +203[(A = 1)(1 + ¢ + %) + 3]|az|*.
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From (3.3), we get
Y[BU(A = 1)(1 + ¢ + %) + 3]O3]as|
< [V1Os[(A = (1 + ¢ +1%) + 3] B — [(A = 1)(1 +t) + 2]*03] |as|* + |1|* BY.
From (3.9), for [|7|©3[(A —1)(1+¢+ %) +3]By — [(A = 1)(1 + ) +2]°©3] > 0 we

have

Y| Bi[(A = 1)(1 + ¢ + 1) 4 3]O3]as|

< [Osl(A = 1) (X +t + 1) + 3] By — [(A = 1)(1 + ) + 2]°03]
y 2|y*B}

2B1[A(\ 1) + 2]203 + [yBZA(N ) E(\, t) — 2Ba[A(\, ) + 2]203 + 2yB2T (A, )O3
+ [7[*B3.

Therefore,
las| < [Iy[©s[(A = 1)(1 + ¢ +¢%) +3]B1 — [(A = 1)(1 + 1) + 2]°63]
" 2|v|B} N 7| B1
(01,05, \, ) [(A=1)1+¢t+12)+3]03  [(A—1)(1+1t+¢2)+ 3|03’

where

T(O1,0,,\,t) =2B1[A(\ 1) + 2]%03
+ [yB2AN, H)Z(\, t) — 2Bo[A(\ t) + 2]02 4+ 2yBIY (), 1)O3].
Consequently,
7| B B < (A -1+ +2°63
(A=D1 +¢t+t2)+3]03 [71©3[(A — 1)(1 + ¢ + t2) + 3]
= (01,0, \,1) (A — 1)1 +1t) + 2202

W(O1, 0, M 1)[(A—1)(1+t+12) + 3|03 B> [Y[©3[(A — 1)(1 +t +12) + 3]

where
®(01,02,\,t) = |7|By |[yBi AN )E(A, t) — 2B2[A(N, 1) + 203 + 29 BT (A, 1) O3]
+ 2|7[203[(A — 1)(1 +t + t?) + 3] B.
This completes the proof. (|

Remark 3.2. Theorem 3.1 is an improvement of the estimates obtained by Selvaraj
et al. [20] in Theorem 2.2. For the coefficient |ag|, it is clear that

|v|B1v/2By
V2B1[A\ 1) + 21202 + [vBIA(N H)E(N 1) — 2Bo[A(\, 1) + 2]202 + 2y B3Y (), )O3
< |v|B1v2By .
T VIYBIANHE(N t) — 2(By — By)[A\ 1) + 21202 + 2y B?Y (A, 1)03]

On the other hand, for the coefficient |as|, we make the following cases:
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[((A=1)(1 +1¢) + 2]°03
703[(A = D)(1 + ¢ + 2) + 3]

17| B1 < By 9] By|7| ?

(i) For By < , it is clear that

(A= 1)(1 +1¢)+ 2]°632
1v[©3[(A = 1)(1 +t + t2) + 3]

(01,020  __Bih| Bifr| 1\’
U (01,09, \,1)T(\,1)O3 — T(\,1)O3 [A(N, 1) + 2]O2

(ii) For By > , it is clear that

Remark 3.3. If we set A = 0 in Theorem 3.1, then we get an improvement of the
estimates obtained by Selvaraj et al. [20, Corollary 2.1].

Remark 3.4. If we set A = 1 in Theorem 3.1, then we get an improvement of the
estimates obtained by Selvaraj et al. [20, Corollary 2.2].

Remark 3.5. If j}jf(z) be the identity map and A = 0 in Theorem 3.1, then we get
an improvement of the estimates obtained by Selvaraj et al. [20, Corollary 2.3].

Remark 3.6. If J}L’f(z) be the identity map and A = 1 in Theorem 3.1, then we get
an improvement of the estimates obtained by Selvaraj et al. [20, Corollary 2.4].

Remark 3.7. If j:f(z) be the identity map and v = 1, ¢ = 0 in Theorem 3.1, then
we get an improvement of the estimates obtained by Deniz [8, Theorem 2.8].

Remark 3.8. If jlff(z) be the identity map and v = 1, A = 1 in Theorem 3.1 is an
improvement of the estimates obtained by Ali et al. in [3, Theorem 2.1].
Remark 3.9. If we take

B 1+ Az
1+ Bz

P(z) =14 (A-B)z4+(B—A)Bz*+...(-1<B<A<1,zel)

(03
o(z) = <1+i> =1420z+2a%2%+-- (0<a<l1, zeU),
which gives By = A — B, By = (B — A)B and B; = 2a, By = 202, in Theorem
3.1, then we can deduce interesting results analogous, respectively. Also, for suitable
choices the parameter p and b in Theorems 3.1 and some Remarks above we have
an improvement of results involving Libera-Bernardi integral operator [19] and Jung-
Kim-Srivastava integral operator [12].
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