Existence for stochastic sweeping process with fractional Brownian motion

Authors

  • Tayeb Blouhi
  • Mohamed Ferhat University of oran usto departement of mathematics
  • Safia Benmansour

DOI:

https://doi.org/10.24193/subbmath.2022.4.07

Keywords:

Sweeping process, Evolution inclusion, Perturbation, Normal cone, fixed point.

Abstract

This paper is devoted to the study of a convex stochastic sweeping process
with fractional Brownian by time delay. The approach is based on discretizing
stochastic functional dierential inclusions..

Author Biography

  • Mohamed Ferhat, University of oran usto departement of mathematics
    Associate   professor departement of mathematics usto university oran

References

C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions,in: Lec-

ture Notes in Mathematics, vol. 580.

C. P. Tsokos, W.J. Padgett, Random Integral Equations with Applications to Life

Sciences and Engineering, Academic Press, New York, 1974.

D. Nualart, The Malliavin Calculus and Related Topics, second edition, Springer-

Verlag, Berlin, 2006.

F. H. Clarke, Yu. S. Ledyaev, R. J . Sten and P. R.Wolenski, Nonsmooth Analysis

and Control Theory, Springer, New York, 1998.

F. H. Clarke, Nonsmooth Analysis, Wiley-Interscience, New York, 1988.

Clarke, F. H., Ledyaev, Yu. S., Stern, R. J. and Wolenski, P. R.: Nonsmooth

Analysis and Control Theory, Springer, New York, 1998.

G. Da Prato and J. Zabczyk, Stochastic Equations in Innite Dimensions, Cam-

bridge University Press, Cambridge, 1992.

H. Sobczyk, Stochastic Dierential Equations with Applications to Physics and

Engineering, Kluwer Academic Publishers, London, 1991.

J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert

space, J. Dierential Equations 26 347374.

J. J. Moreau, Rale par un convexe variable (premiere partie), expose no 15. Sem-

inaire d'analyse convexe, University of Montpellier, 43 pages, 1971.

J. J. Moreau. Probleme d'evolution associ'e a un convexe mobile d'un espace

hilbertien. C. R. Acad. Sc. Paris, Serie A-B, (1973), 791-794.

J.P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.

K. Deimling, Multi-valued Dierential Equations, De Gruyter, Berlin, New York,

L. Gorniewicz, Topological Fixed Point Theory of Multi-Valued Mappings, in:

Mathematics and its Applications, vol. 495, Kluwer Academic Publishers, Dor-

drecht, 1999.

S. Djebali, L. Gorniewicz, and A. Ouahab, First order periodic impulsive semi-

linear dierential inclusions: existence and structure of solution sets, Math. and

Comput. Mod., 52 (2010), 683{714.

T. Blouhi, T. Caraballo, A. Ouahab, Existence and stability results for semilinear

systems of impulsive stochastic dierential equations with fractional Brownian

motion, Stoch. Anal. Appl.5 (2016),792834.

Downloads

Published

2022-12-01

Issue

Section

Articles