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A dynamic problem with wear involving
electro-elastic-viscoplastic materials with damage

Aziza Bachmar and Souraya Boutechebak

Abstract. A dynamic contact problem is considered in the paper. The material
behavior is described by electro-elastic-viscoplastic law with piezoelectric effects.
The body is in contact with damage and an obstacle. The contact is frictional
and bilateral with a moving rigid foundation which results in the wear of the
contacting surface. The damage of the material caused by elastic deformations.
The evolution of the damage is described by an inclusion of parabolic type. The
problem is formulated as a coupled system of an elliptic variational inequality for
the displacement, variational equation for the electric potential and a parabolic
variational inequality for the damage. We establish a variational formulation for
the model and we prove the existence of a unique weak solution to the problem.
The proof is based on a classical existence and uniqueness result on parabolic
inequalities, differential equations and fixed point arguments.
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1. Introduction

Scientific research and recent papers in mechanics are articulated around two
main components, one devoted to the laws of behavior and other devoted to boundary
conditions imposed on the body. The boundary conditions reflect the binding of the
body with the outside world. Recent researches use coupled laws of behavior between
mechanical and electric effects or between mechanical and thermal effects(see [2]). For
the case of coupled laws of behavior between mechanical and electric effects, general
models can be found in (see [5]). Situations of contact between deformable bodies
are very common in the industry and everyday life. Contact of braking pads with
wheels, tires with roads, pistons with skirts or the complex metal forming processes
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are just a few examples. The constitutive laws with internal variables have been used
in various publications in order to model the effect of internal variables in the behavior
of real bodies like metals, rocks, polymers and so on, for which the rate of deformation
depends on the internal variables. Some of the internal state variables considered by
many authors are the spatial display of dislocation, the work-hardening of materials,

In this paper, we consider a general model for the dynamic process of frictional
contact bilateral between a deformable body and an obstacle which results in the wear
of the contacting surface. The material obeys an electro-elastic-viscoplastic constitu-
tive law with piezoelectric effects. We derive a variational formulation of the problem
which includes a variational second order evolution inequality. We establish the ex-
istence of a unique weak solution of the problem. The idea is to reduce the second
order evolution nonlinear inequality of the system to first order evolution inequality.
After this,we use classical results on first order evolution nonlinear inequalities and
aquation , a parabolic variational inequality and the fixed point arguments.

The paper is structured as follows. In Section 1 we present the electro-elastic-
viscoplastic contact model with friction and provide comments on the contact bound-
ary conditions. In Section 2 we list the assumptions on the data and derive the
variational formulation. In Section 3 we present our main results on existence and
uniqueness which state the unique weak solvability.

2. Problem statement

Problem P: Find a displacement field u : Ω×[0, T ]→ Rd, a stress field σ : Ω×[0, T ]→
Sd, the an electric potentiel field ϕ : Ω × [0, T ] → R, the an electric displacement
field D : Ω × [0, T ] → Rd, the damage field β : Ω × [0, T ] → Rd, and the wear
ω : Γ3 × [0, T ]→ R+ such that

σ(t) = A(ε(
.
u(t))) + B(ε(u(t)), β(t))

+

∫ t

0

G
(
σ(s)−A(ε(

.
u(s))), ε(u(s))

)
ds− ξ∗E (ϕ) , in Ω a.e. t ∈ [0, T ],

(2.1)

D = BE (ϕ) + ξε (u)
in Ω× [0, T ] ,

(2.2)

ρ
..
u = Div σ + f0, in Ω× [0, T ], (2.3)

div D = q0 in Ω× [0, T ] , (2.4)
.

β−K1∆β + ∂ϕK (β) 3 S(ε(u), β), in Ω× [0, T ], (2.5)

u = 0, on Γ1 × [0, T ] , (2.6)

σν = h, on Γ2 × [0, T ], (2.7){
σν = −α

∣∣ .uν∣∣ , |στ | = −µσν ,
στ = −λ

( .
uτ − v∗

)
, λ ≥ 0,

.
ω = −kυ∗σν , k > 0. on Γ3 × [0, T ],

(2.8)
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∂β
∂ν = 0, on Γ × [0, T ] , (2.9)

ϕ = 0 on Γa × [0, T ] , (2.10)

Dν = q2on Γb × [0, T ] , (2.11)

u (0) = u0, v (0) = v0, β (0) = β0, ω(0) = ω0, in Ω, (2.12)

where (2.1) and (2.2) represent the electro-elastic-viscoplastic constitutive law with
damage. we denote ε (u) (respectively; E (ϕ) = −∇ϕ, A,G, ξ, ξ∗, B ) the linearized
strain tensor (respectively; electric field, the viscosity nonlinear tensor, the viscoplas-
ticity tensor, the third order piezoelectric tensor and its transpose, the electric per-
mittivity tensor), (2.3) represents the equation of motion where ρ represents the mass
density, (2.4) represents the equilibrium equation, we mention thatDivσ, divD are the
divergence operators. Inclusion (2.5) describes the evolution of damage field, governed
by the source damage function ϕ, where ∂ϕK (ζ) is the subdifferential of indicator
function of the set K of admissible damage functions.

Equalities (2.6) and (2.7) are the displacement-traction boundary conditions,
respectively. (2.8) describes the frictional bilateral contact with wear described above
on the potential contact surface Γ3. (2.9) represents on Γ, a homogeneous Neumann
boundary condition for the damage field. (2.10) , (2.11) represent the electric boundary
conditions.The functions u0, v0, β0 and ω0 in (2.12) are the initial data.

3. Variational formulation and preliminaries

For a weak formulation of the problem, first we itroduce some notation. The
indices i, j, k, l range from 1 to d and summation over repeated indices is implied.
An index that follows a comma represents the partial derivative with respect to the
corresponding component of the spatial variable, e. g: ui.j = ∂ui

∂xj
. We also use the

following notations

H = L2(Ω)d = {u = (ui)/ui ∈ L2(Ω)},
H = σ = (σij)/σij = σji ∈ L2(Ω),

H1 = u = (ui)/ε(u) ∈ H = H1 (Ω)
d

H1 = σ ∈ H/Divσ ∈ H,
The operators of deformation ε and divergence Div are defined by

ε(u) = (εij(u)), εij(u) = 1
2 (ui,j + uj,i), Divσ = (σij,j).

The spaces H,H, H1 and H1 are real Hilbert spaces endowed with the canonical inner
products given by

(u, v)H =
∫

Ω
uividx,∀u, v ∈ H,

(σ, τ)H =
∫

Ω
σijτijdx, ∀σ, τ ∈ H,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H,∀u, v ∈ H1,

(σ, τ)H1
= (σ, τ)H + (Divσ,Divτ)H , σ, τ ∈ H1,

We denote by |·|H (respectively; | · |H, | · |H1
and | · |H1) the associated norm on the

space H ( respectively; H, H1 and H1).
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Let HΓ = (H1/2(Γ))d and γ : H1(Γ)d → HΓ be the trace map. For every element v
∈ (H1(Γ))d, we also use the notation v to denote the trace map γv of v on Γ, and we
denote by vν and vτ the normal and tangential components of v on Γ given by

vν = v.ν, vτ = v − vνν
Similarly, for a regular (say C1) tensor field σ : Ω → Sd we define its normal and
tangential components by

σν = (σν) .ν, στ = σν − σνν
We use standard notation for the Lp and the Sobolev spaces associated with Ω and
Γ and, for a function ψ ∈ H1 (Ω) we still write ψ to denote it trace on Γ. We recall
that the summation convention applies to a repeated index.
For the electric displacement field we use two Hilbert spaces

W = L2 (Ω)
d
,W1 =

{
D ∈ W,divD ∈ L2 (Ω)

}
endowed with the inner products

(D,E)W =
∫

Ω
DiEidx, (D,E)W1

= (D,E)W + (divD,divE)L2(Ω)

and the associated norm |.|W(respectively; |.|W1
). The electric potential field is to be

found in

W =
{
ψ ∈ H1 (Ω) , ψ = 0 on Γa

}
.

Since meas (Γa) > 0, the following Friedrichs-Poincaré’s inequality holds, thus

|∇ψ|W ≥ cF |ψ|H1(Ω) ∀ψ ∈W, (3.1)

where cF > 0 is a constant which depends only on Ω and Γa. On W , we use the inner
product given by

(ϕ,ψ)W = (∇ϕ,∇ψ)W ,

and let |.|W be the associated norm. It follows from (3.1) that |.|H1(Ω) and |.|W are

equivalent norms on W and therefore (W, |.|W ) is a real Hilbert space.
Moreover, by the Sobolev trace Theorem, there exists a constant c̃0, depending only
on Ω, Γa and Γ3 such that

|ψ|L2(Γ3) ≤ c̃0 |ψ|W ∀ψ ∈W. (3.2)

We recall that when D ∈ W1 is a sufficiently regular function,the Green’s type formula
holds

(D,∇ψ)W + (divD,ψ)L2(Ω) =

∫
Γ

Dν.ψda. (3.3)

When σ is a regular function, the following Green ’s type formula holds

(σ, ε (v))H + (Divσ, v)H =
∫

Γ
σν.vda ∀v ∈ H1.

Next, we define the space

V = {u ∈ H1/ u = 0 on Γ1}.
Since meas (Γ1) > 0, the following Korn’s inequality holds

|ε(u)|H ≥ cK |v|H1
∀v ∈ V, (3.4)

where cK > 0 is a constant which depends only on Ω and Γ1. On the space V we use
the inner product

(u, v)V = (ε(u), ε(v))H, (3.5)
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let |.|V be the associated norm. It follows by (3.4) that the norms |.|H1
and |.|V are

equivalent norms on V and therefore, (V, |.|V ) is a real Hilbert space. Moreover, by
the Sobolev trace Theorem, there exists a constant c0 depending only on the domain
Ω, Γ1 and Γ3 such that

|v|L2(Γ3)d ≤ c0 |v|V ∀v ∈ V. (3.6)

Finally, for a real Banach space (X, |.|X) we use the usual notation for the space
Lp (0, T ;X) and W k.p (0, T ;X), where 1 ≤ p ≤ ∞, k = 1, 2......; we also denote by
C (0, T ;X) and C1 (0, T ;X) the spaces of continuous and continuously differentiable
function on [0, T ]with values in X, with the respective norms:

|x|C(0,T ;X) = max
t∈[0,T ]

|x (t)|X ,

|x|C1(0,T ;X) = max
t∈[0,T ]

|x (t)|X + max
t∈[0,T ]

∣∣ .x (t)
∣∣
X
.

In what follows, we assume the following assumptions on the problem P .

The viscosity operator A : Ω× Sd → Sd

(a)∃ MA > 0 such that : |A (x, ε1)−A (x, ε2)| ≤MA |ε1 − ε2|
∀ ε1 , ε2 ∈ Sd, a. e. x ∈ Ω,

(b) ∃ mA > 0 such that : |A (x, ε1)−A (x, ε2) , ε1 − ε2| ≥ mA |ε1 − ε2|2

∀ ε1 , ε2 ∈ Sd, a. e. x ∈ Ω,

(c) The mapping x→ A (x, ε) is lebesgue measurable in Ω for all ε ∈ Sd,
(d) The mapping x→ A (x, 0) ∈ H.

(3.7)
The elasticity operator B : Ω× Sd ×R→ Sdsatisfies

(a) ∃ LB > 0 such that

|B (x, ε1, α1)− B (x, ε2, α2)| ≤ LB (|ε1 − ε2|+ |α1 − α2|)
∀ ε1 , ε2 ∈ Sd, ∀α1, α2 ∈ R, a. e. x ∈ Ω,

(b) The mapping x→ B (x, ε, α) is lebesgue measurable in Ω

for all ε ∈ Sd and α ∈ R
(c) The mapping x→ B (x, 0, 0) ∈ H,

(3.8)

The viscoplasticity operator G : Ω× Sd ×Sd → Sd satisfies

(a) ∃ LG > 0 such that

|G (x, σ1, ε1)− G (x, σ2, ε2)| ≤ LG (|σ1 − σ2|+ |ε1 − ε2|)
∀ σ1 , σ2 ∈ Sd ,∀ ε1 , ε2 ∈ Sd, a. e. x ∈ Ω,

(b) The mapping x→ G (x, σ, ε) is lebesgue measurable in Ω

for all σ, ε ∈ Sd

(c) The mapping x→ G (x, 0, 0) ∈ H,

(3.9)
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The damage source function S : Ω× Sd ×R→ R satisfies

(a) ∃ MS > 0 such that

|S (x, ε1, α1)− S (x, ε2, α2)| ≤MS (|ε1 − ε2|+ |α1 − α2|)
∀ ε1 , ε2 ∈ Sd, ∀α1, α2 ∈ R, a. e. x ∈ Ω,

(b) The mapping x→ S (x, ε, α) is lebesgue measurable in Ω

for all ε ∈ Sd and α ∈ R
(c) The mapping x→ S (x, 0, 0) ∈ L2 (Ω) ,

(3.10)

The piezoelectric tensor ξ = (eijk) : Ω× Sd → Rd satisfies
(a) : ξ = (eijk) : Ω× Sd → Rd,
(b) : ξ (x, τ) = (eijk (x) τjk) ∀τ = (τij) ∈ Sd, a. e. x ∈ Ω,

(c) : eijk = eikj ∈ L∞ (Ω) ,

(3.11)

The electric permittivity tensor B = (Bij) : Ω× Rd → Rd

(a) : B = (Bij) : Ω× Rd → Rd,
(b) : B (x,E) = (bij (x)Ej) ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω,

(c) : bij = bji ∈ L∞ (Ω) ,

(d) : ∃ mB > 0 such that : bij (x)EiEj ≥ mB |E|2

∀E = (Ei) ∈ Rd, x ∈ Ω.

(3.12)

The mass density ρ satisfy

ρ ∈ L∞(Ω) there exists ρ∗ > 0 such that ρ(x) ≥ ρ∗, a.e. x ∈ Ω (3.13)

The body forces, surface tractions,the densities of electric charges, and the functions
α and µ, satisfy 

f0 ∈ L2(0, T ;H), h ∈ L2(0, T ;L2(Γ2)d),

q0 ∈ L2
(
0, T ;L2 (Ω)

)
, q2 ∈ L2

(
0, T ;L2 (Γb)

)
.

α ∈ L∞(Γ3)α(x) ≥ α∗ > 0, a.e. on Γ3,

µ ∈ L∞(Γ3), µ(x) > 0, a.e. on Γ3,

K1 > 0, i = 0, 1.

(3.14)

The set K of admissible damage functions defined by

K =
{
β ∈ H1(Ω)/ 0 ≤ β ≤ 1 p.p in Ω

}
(3.15)

The initial data satisfy

u0 ∈ V, β0 ∈ K,ω0 ∈ L∞(Γ3). (3.16)

We use a modified inner product on H = L2(Ω)d given by

((u, v)) = (ρu, v)L2(Ω)d ,∀u.v ∈ H.
That is, it is weighted with ρ. We let H be the associated norm

‖v‖H = (ρv, v)
1
2

L2(Ω)d
,∀v ∈ H.
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We use the notation (., .)V ′×V to represent the duality pairing between V ′ and V .
Then, we have

(u, v)V ′×V = ((u, v)) ,∀u ∈ H,∀v ∈ V.

It follows from assumption (3.13) that ‖.‖H and |.|H are equivalent norms on H,
and also the inclusion mapping of (V, |.|V ) into (H, ‖.‖H) is continuous and dense. We
denote by V ′ the dual space of V . Identifying H with its own dual, we can write the
Gelfand triple V ⊂ H = H ′ ⊂ V ′.
We define the function f(t) ∈ V and q : [0.T ]→W by

(f (t) , v)V =
∫

Ω
f0 (t) vdx+

∫
Γ2
h (t) vda∀v ∈ V, t ∈ [0, T ] ,

(q (t) , ψ)W = −
∫

Ω
q0 (t)ψdx+

∫
Γb
q2 (t)ψda ∀ψ ∈W, t ∈ [0.T ] ,

for all u, v ∈ V, ψ ∈ W and t ∈ [0.T ], and note that condition (3.14) imply that

f ∈ L2(0.T ;V ′), q ∈ L2(0.T ;W ). (3.17)

We introduce the following bilinear

a1 : H1 (Ω)×H1 (Ω)→ R, a1(ζ, ξ) = k1

∫
Ω

∇ζ.∇ξdx, ∀ζ, ξ ∈ H1 (Ω) . (3.18)

We consider the wear functional j : V × V → R,

j(u, v) =

∫
Γ3

α |uν | (µ |vτ − v∗|) da. (3.19)

Finally, we consider φ : V × V → R,

φ(u, v) =

∫
Γ3

α |uν | vνda,∀v ∈ V. (3.20)

We define for all ε > 0

jε(g, v) =
∫

Γ3
α |gν |

(
µ
√
|vτ − v∗|2 + ε2

)
da, ∀v ∈ V.

Using the above notation and Green’s formula, we derive the following variational
formulation of mechanical problem P .

Problem PV : Find a displacement field u : Ω×[0, T ]→ V, a stress field σ : Ω×[0, T ]→
Sd , an electric potential field ϕ : Ω × [0.T ] → R, an electric displacement field D :
Ω×[0.T ]→ Rd, the damage field β : Ω×[0, T ]→ Rd and the wear ω : Γ3×[0, T ]→ R+
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such that

σ(t) = A(ε(
.
u(t))) + B(ε(u(t)), β(t))

+
∫ t

0
G
(
σ(s)−A(ε(

.
u(s))), ε(u(s))

)
ds− ξ∗E (ϕ) , in Ω a.e. t ∈ [0, T ]

(3.21)

(ü(t), w − u̇(t))V ′×V + (σ(t), ε(w − .
u(t)))H + j(

.
u,w)− j( .u, .u(t))

+φ(
.
u,w)− φ(

.
u,

.
u(t)) ≥ (f(t), w − .

u(t)), ∀u,w ∈ V (3.22)

(D(t),Oψ)L2(Ω)d + (q (t) , ψ)W = 0∀ψ ∈W (3.23)( .
β (t) , ζ − β (t)

)
L2(Ω)

+ a1 (β (t) , ζ − β (t)) ≥

(S(ε(u (t)), β) , ζ − β (t))L2(Ω),∀ζ ∈ K, a.e. t ∈ [0, T ]
(3.24)

.
ω = −kυ∗σν , k > 0 (3.25)

u (0) = u0, v (0) = v0, β (0) = β0, ω (0) = ω0, in Ω (3.26)

4. Existence and uniqueness result

Our main result which states the unique solvability of Problem are the following.

Theorem 4.1. Let the assumptions (3.7)−(3.15) hold. Then, Problem PV has a unique
solution (u, σ, ϕ,D, β, ω) which satisfies

u ∈ C1 (0, T ;H) ∩W 1.2 (0, T ;V ) ∩W 2.2 (0, T ;V ′) (4.1)

σ ∈ L2(0, T ;H1), Divσ ∈ L2(0, T ;V ′) (4.2)

ϕ ∈W 1.2 (0, T ;W ) (4.3)

D ∈W 1.2(0, T ;W1) (4.4)

β ∈W 1.2
(
0, T ;L2 (Ω)

)
∩ L2(0, T ;H1 (Ω)) (4.5)

ω ∈ C1(0, T ;L2(Γ3)) (4.6)

We conclude that under the assumptions (3.7)− (3.15), the mechanical problem
(2.1)− (2.12) has a unique weak solution with the regularity (4.1)− (4.6).

The proof of this theorem will be carried out in several steps. It is based on argu-
ments of first order evolution nonlinear inequalities, evolution equations, a parabolic
variational inequality, and fixed point arguments.
First step: Let g ∈ L2(0, T ;V ) and η ∈ L2(0, T ;V ′) are given, we deduce a variational
formulation of Problem PV .
Problem PVgη : Find a displacement field ugη : [0, T ]→ V such that{

ugη (t) ∈ V (ügη(t), w − u̇gη(t))V ′×V + (Aε( .ugη(t)), ε(w − .
ugη(t))H+(

η, w − .
ugη(t)

)
V ′×V + j(g, w)− j(g, .ugη(t)) ≥ (f(t), w − .

ugη(t)), ∀w ∈ V.
(4.7)

.
ugη (0) = v (0) = v0. (4.8)

We define fη(t) ∈ V for a.e. t ∈ [0, T ] by

(fη(t), w)V ′×V = (f(t)− η(t), w)V ′×V ,∀w ∈ V. (4.9)

From (3.17), we deduce that
fη ∈ L2(0, T ;V ′) (4.10)
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Let now ugη : [0, T ]→ V be the function defined by

ugη (t) =

∫ t

0

vgη (s) ds+ u0, ∀t ∈ [0, T ] . (4.11)

We define the operator A : V ′ → V by

(Av,w)V ′×V = (Aε(v), ε(w))H,∀v, w ∈ V. (4.12)

Lemma 4.2. For all g ∈ L2(0, T ;V ) and η ∈ L2(0, T ;V ′), PVgη has a unique solution
with the regularity

vgη ∈ C(0, T ;H) ∩ L2(0, T ;V ) and
.
vgη ∈ L2(0, T ;V ′). (4.13)

Proof. The proof from nonlinear first order evolution inequalities(see [4, 6]). �

Second step: We use the displacement field ugη to consider the following variational
problem.
Let us consider now the operator Λη : L2(0, T ;V )→ L2(0, T ;V ), defined by

Ληg = vgη (4.14)

We have the following lemma.

Lemma 4.3. The operator Λη has a unique fixed point g ∈ L2(0, T ;V )

Proof. Let g1, g2 ∈ L2(0, T ;V ) and let η ∈ L2(0.T ;V ′). Using similar arguments as
those in (4.7), (4.11) we find

(
.
v1 (t)− .

v2 (t) , v1 (t)− v2 (t)) + (Aε (v1 (t))−Aε (v2 (t)) , ε (v1 (t))− ε (v2 (t)))

+ j(g1, v1 (t))− j(g1, v2 (t))− j(g2, v1 (t)) + j(g2, v2 (t)) ≤ 0. (4.15)

From the definition of the functional j given by (3.17), we have

j(g1, v2 (t))− j(g1, v1 (t))− j(g2, v2 (t)) + j(g2, v1 (t))

=

∫
Γ3

(α |g1ν | − α |g2ν |) (µ |v1τ − v∗| − µ |v2τ − v∗|) da. (4.16)

From (3.6) and (3.14), we find

j(g1, v2 (t))−j(g1, v1 (t))−j(g2, v2 (t))+j(g2, v1 (t)) ≤ C |g1 − g2|V |v1 − v2|V . (4.17)

Integrating the (4.15) inequality with respect to time, using the initial conditions
v2 (0) = v1 (0) = v0, using (3.7) , (4.17)and the inequality 2ab ≤ C

mA
a2 + mA

C b2 we find

|v2 (t)− v1 (t)|2V ≤ C
∫ t

0

|g2 (s)− g1 (s)|2V ds. (4.18)

Thus, for m sufficiently large, Λmη is a contraction on L2(0, T ;V ) and so Λη has a
unique fixed point in this Banach space. �

Third step: We use the displacement field ugη to consider the following variational
problem.
Problem PV ϕgη: Find an electric potential field ϕ

gη
: Ω× [0.T ]→W such that

(β∇ϕgη(t),Oψ)L2(Ω)d − (ξε(ugη(t)),Oψ)L2(Ω)d = (q (t) , ψ)W , ∀ψ ∈W, t ∈ [0, T ] .

(4.19)
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We have the following result for PV ϕgη :

Lemma 4.4. There exists a unique solution ϕgη ∈W 1.2 (0.T ;W ) satisfies (4.19), more-
over if ϕ1and ϕ2 are two solutions to (4.19). Then, there exists a constants c > 0 sach
that

|ϕ1 (t)− ϕ2 (t)|W ≤ c |u1 (t)− u2 (t)|V ∀t ∈ [0, T ] . (4.20)

Proof. The proof given in Ref (see [1]). �

Fourth step: For φ ∈ C(0, T ;L2(Ω)), we consider the following variational problem.
Problem PVφ: Find the damage field βφ : [0, T ]→ K such that( .

βφ (t) , ζ − βφ (t)
)
L2(Ω)

+ a1 (βφ (t) , ζ − βφ (t)) ≥

(φ, ζ − βφ (t))L2(Ω),∀ζ ∈ K, a.e. t ∈ [0, T ] ,
(4.21)

βφ (0) = β0 (4.22)

Lemma 4.5. There exists a unique solution βφ to the auxiliary problem PVφ such that

βφ ∈W 1.2
(
0, T ;L2 (Ω)

)
∩ L2(0, T ;H1 (Ω))

Proof. The proof given in Ref (see [3]). �

By taking into account the above results and the properties of the operators B and G
and of the functions ψ and S, we may consider the operator

Λ : C(0, T ;V ′ × L2(Ω))→ C(0, T ;V ′ × L2(Ω)),
Λ(η, φ)(t) = (Λ1(η)(t),Λ2(φ)(t)),

(4.23)

(Λ1(η), w)V ′×V = (B(ε(uη(t)), βφ(t)), w)

+

(∫ t

0

G
(
ση(s)−A(ε(

.
uη(s))), ε(uη(s))

)
ds+ ξ∗∇ (ϕ) , w

)
+φ(

.
uη, w) ∀w ∈ V,

(4.24)

Λ2(φ)(t) = S(ε(uη (t)), βφ). (4.25)

We have the following result.

Lemma 4.6. The mapping Λ(η, φ) : [0, T ] → V ′ × L2(Ω) has a unique element
(η∗, φ∗) ∈ C(0, T ;V ′ × L2(Ω)) such that Λ(η∗, φ∗) = (η∗, φ∗)

Proof. Let (η1, φ1), (η2, φ2) ∈ C(0, T ;V ′×L2(Ω)) and t ∈ [0, T ]. We use the notation
uηi = ui,

.
uηi = vηi = vi, βφi = βi, ϕηi = ϕi and σηi = σi, for i = 1, 2. Using (4.24)

and the relations (3.7)− (3.9), we obtain

|η1 (t)− η2 (t)|2V ′ ≤ C(|β1 (t)− β2 (t)|2L2(Ω)

+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V
+

∫ t

0

(|σ1 (s)− σ2 (s)|2H1
+ |v1 (s)− v2 (s)|2V

+ |u1 (s)− u2 (s)|2V )ds+ |ϕ1 (t)− ϕ2 (t)|2W
+φ(v1, v2 (t))− φ(v1, v1 (t))− φ(v2, v2 (t)) + φ(v2, v1 (t)).

(4.26)
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From the definition of the functional φ given by (3.20), and using (3.6), (3.14) we have

φ(v1, v2 (t))− φ(v1, v1 (t))− φ(v2, v2 (t)) + φ(v2, v1 (t)) ≤ C |v1 (t)− v2 (t)|2V . (4.27)

We have

|u2 (t)− u1 (t)|V ≤
∫ t

0
|v2 (s)− v1 (s)|V ds

Taking into account that

σi(t) = A(ε(
.
ui(t))) + ηi (t) , ∀t ∈ [0, T ]. (4.28)

By (2.1), and using (3.7), we find

|σ1 (s)− σ2 (s)|2H1
≤ C

(
|v1 (t)− v2 (t)|2V + |η1 − η2|2V ′

)
. (4.29)

It follows that ( .
v1 (t)− .

v2 (t) , v1 (t)− v2 (t)
)

+ (Aε (v1 (t))−Aε (v2 (t)) , ε (v1 (t))− ε (v2 (t))) +
+ (η1 (s)− η2 (s) , v1 (t)− v2 (t)) ≤ j(v1, v2 (t))− j(v1, v1 (t))
−j(v2, v2 (t)) + j(v2, v1 (t)).

(4.30)

From the definition of the functional j given by (3.19), and using (3.6), (3.14) we have

j(v1, v2 (t))− j(v1, v1 (t))− j(v2, v2 (t)) + j(v2, v1 (t)) ≤ C |v1 − v2|2V . (4.31)

Integrating the (4.30) inequality with respect to time, using the initial conditions
v2 (0) = v1 (0) = v0, using (3.7) , (4.31) , using Cauchy-Schwartz’s inequality and the
inequality

2ab ≤ mAa2 +
1

mA
b2,

by Gronwall’s inequality we find

|v1 (t)− v2 (t)|2V ≤ C
∫ t

0

|η1 (s)− η2 (s)|2V ′ ds. (4.32)

Also ∫ t

0

|u1 (s)− u2 (s)|2V ds ≤ C
∫ t

0

∫ s

0

|η1 (r)− η2 (r)|2V ′ drds

≤ C
∫ t

0

|η1 (s)− η2 (s)|2 ds. (4.33)

For the damage field, from (4.21) we deduce that( .
β1 −

.

β2, β1 − β2

)
L2(Ω)

+ a1 (β1 − β2, β1 − β2) ≤ (φ1 − φ2, β1 − β2)L2(Ω),

a.e. t ∈ [0, T ] .

Integrating the previous inequality with respect to time, using the initial conditions
β1(0) = β2(0) = β0 and the inequality a1 (β2 − β1, β2 − β1) ≥ 0, by Gronwall’s in-
equality we find

|β1 (t)− β2 (t)|2L2(Ω) ≤ C
∫ t

0

|φ1 (s)− φ2 (s)|2L2(Ω) ds, ∀t ∈ [0, T ]. (4.34)
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Applying the previous inequalities, the estimates (4.32)− (4.34), we obtain

|Λ(η2, φ2) (t)− Λ(η1, φ1) (t)|V ′×L2(Ω)) ≤ C
∫ t

0
|(η2, φ2) (s)− (η1, φ1) (s)| ds

Thus, for m sufficiently large, Λm is a contraction on C(0, T ;V ′ × L2(Ω))) and so Λ
has a unique fixed point in this Banach space. �

We consider the operator L : C(0, T ;L2(Γ3))→ C(0, T ;L2(Γ3))

Lω (t) = −kυ∗
∫ t

0

σν (s) ds,∀t ∈ [0, T ]. (4.35)

Lemma 4.7. The operator L : C(0, T ;L2(Γ3))→ C(0, T ;L2(Γ3)) has a unique element
ω∗ ∈ C(0, T ;L2(Γ3)), such that Lω∗ = ω∗.

Proof. Using (4.35) , we have

|Lω1 (t)− Lω2 (t) |2L2(Γ3) ≤ kυ
∗
∫ t

0

|σ1 (s)− σ2 (s)|2 ds, (4.36)

From (2.1) and using (3.7)− (3.9) , we find

|σ1 (t)− σ2 (t)|2H1
≤ C(|β1 (t)− β2 (t)|2L2(Ω) + |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V

+

∫ t

0

(|σ1 (s)− σ2 (s)|2H1
+ |v1 (s)− v2 (s)|2V + |u1 (s)− u2 (s)|2V )ds

+ |ϕ1 (t)− ϕ2 (t)|2W (4.37)

By (4.26) , (4.34) , and by Gronwall’s inequality we find

|β1 (t)− β2 (t)|2L2(Ω) ≤ C
∫ t

0

|u1 (s)− u2 (s)|2V ds, ∀t ∈ [0, T ]. (4.38)

And by Gronwall’s inequality we find

|σ1 (t)−σ2 (t)|2H1
≤ C

(∫ t

0

|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V

)
(4.39)

We have ∫ t

0

|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V

≤ C
∫ t

0

|v1 (s)− v2 (s)|2V ds.

So ∫ t
0
|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V

≤ C
(∫ t

0

|v1 (s)− v2 (s)|2V ds+ + |ω1 (t)− ω2 (t)|2L2(Γ3)

)
(4.40)

By Gronwall’s inequality we find∫ t
0
|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V ≤ C |ω1 (t)− ω2 (t)|2L2(Γ3)
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So, we have

|σ1 (t)− σ2 (t)|2H1
≤ C

∫ t

0

|ω1 (s)− ω2 (s)|2L2(Γ3) ds (4.41)

Using (4.41) , we find

|Lω1 (t)− Lω2 (t)|L2(Γ3) ≤ C
∫ t

0
|ω1 (s)− ω2 (s)|L2(Γ3) ds

Thus, for m sufficiently large, Lm is a contraction on C(0, T ;L2(Γ3)) and so L has a
unique fixed point in this Banach space. �

Now, we have all the ingredients to prove Theorem 4.1.
Existence. Let g∗ ∈ L2(0, T ;V ) be the fixed point of Λη∗ defined by (4.14), let
(η∗, φ∗) ∈ C(0, T ;V ′ × L2(Ω))) be the fixed point of Λ defined by (4.23) − (4.25),
let ω∗ ∈ C(0, T ;L2(Γ3)) be the fixed point of Lω∗ defined by (4.36), and let

(u, ϕ, β) = (ug∗η∗ , ϕg∗η∗ , βφ∗)

be the solutions of Problems PVg∗η∗ , and respectively PV ϕg∗η∗ , PVφ∗ . It results from
(4.7), (4.8), (4.19), (4.21), (4.22) that (ug∗η∗ , ϕg∗η∗ , βφ∗) is the solutions of Problems
PV. Properties (4.1)− (4.6) follow from Lemmas 1, 3 and 4.
Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the
fixed point of the operators Λη, Λ,L defined by (4.14), (4.23)− (4.25), (4.36) and the
unique solvability of the Problem PVgη and PVφ which completes the proof.
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