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On a system of nonlinear partial functional
differential equations of different types

László Simon

Abstract. We consider a system of a semilinear hyperbolic functional differential
equation (where the lower order terms contain functional dependence on the
unknown function) and a quasilinear parabolic functional differential equation
with initial and boundary conditions. Existence of weak solutions for t ∈ (0, T )
and for t ∈ (0,∞) will be shown and some qualitative properties of the solutions
in (0,∞) will be formulated.
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1. Introduction

In the present paper we consider weak solutions of the following system of equa-
tions:

u′′(t) +Q(u(t)) + ϕ(x)h′(u(t)) +H(t, x;u, z) + ψ(x)u′(t) = F1(t, x; z), (1.1)

z′(t)−
n∑
j=1

Dj [aj(t, x,Dz(t), z(t);u, z)] + a0(t, x,Dz(t), z(t);u, z) = F2(t, x;u) (1.2)

(t, x) ∈ QT = (0, T )× Ω

where Ω ⊂ Rn is a bounded domain and we use the notations u(t) = u(t, x), z(t) =
z(t, x) u′ = Dtu, z′ = Dtz u′′ = D2

t u, Dz = (D1z, . . . ,Dnz), Q may be e.g. a
linear second order symmetric elliptic differential operator in the variable x; h is a
C2 function having certain polynomial growth, H contains nonlinear functional (non-
local) dependence on u and z, with some polynomial growth and F1 contains some
functional dependence on z. Further, the functions aj define a quasilinear elliptic
differential operator in x (for fixed t) with functional dependence on u and z. Finally,
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F2 may non-locally depending on u. (The system (1.1), (1.2) consists of a semilinear
hyperbolic functional equation and a parabolic functional equation.)

This paper was motivated by some problems which were modelled by systems
consisting of (functional) differential equations of different types. In [4] S. Cinca in-
vestigated a model, consiting of an elliptic, a parabolic and an ordinary nonlinear
differential equation, which arise when modelling diffusion and transport in porous
media with variable porosity. In [6] J.D. Logan, M.R. Petersen and T.S. Shores consid-
ered and numerically studied a similar system which describes reaction-mineralogy-
porosity changes in porous media with one-dimensional space variable. J. H. Merkin,
D.J. Needham and B.D. Sleeman considered in [7] a system, consisting of a non-
linear parabolic and an ordinary differential equation, as a mathematical model for
the spread of morphogens with density dependent chemosensitivity. In [3], [8], [9] the
existence of solutions of such systems were studied.

In Section 2 the existence of weak solutions will be proved for t ∈ (0, T ), in
Section 3 some examples will be shown and in Section 4 we shall prove existence and
certain properties of solutions for t ∈ (0,∞).

2. Solutions in (0, T )

Denote by Ω ⊂ Rn a bounded domain having the uniform C1 regularity property
(see [1]), QT = (0, T ) × Ω. Denote by W 1,p(Ω) the Sobolev space of real valued
functions with the norm

‖u‖ =

∫
Ω

 n∑
j=1

|Dju|p + |u|p
 dx

1/p

(2 ≤ p <∞).

The number q is defined by 1/p + 1/q = 1. Further, let V1 ⊂ W 1,2(Ω) and V2 ⊂
W 1,p(Ω) be closed linear subspaces containing C∞0 (Ω)), V ?j the dual spaces of Vj , the

duality between V ?j and Vj will be denoted by 〈·, ·〉, the scalar product in L2(Ω) will
be denoted by (·, ·). Finally, denote by Lp(0, T ;Vj) the Banach space of the set of
measurable functions u : (0, T )→ Vj with the norm

‖u‖Lp(0,T ;Vj) =

[∫ T

0

‖u(t)‖pVj
dt

]1/p

and L∞(0, T ;Vj), L
∞(0, T ;L2(Ω)) the set of measurable functions u : (0, T )→ Vj , u :

(0, T )→ L2(Ω), respectively, with the L∞(0, T ) norm of the functions t 7→ ‖u(t)‖Vj ,
t 7→ ‖u(t)‖L2(Ω), respectively.

Now we formulate the assumptions on the functions in (1.1), (1.2).
(A1). Q : V1 → V ?1 is a linear continuous operator such that

〈Qu, v〉 = 〈Qv, u〉, 〈Qu, u〉 ≥ c0‖u‖2V1

for all u, v ∈ V1 with some constant c0 > 0.
(A2). ϕ,ψ : Ω→ R are measurable functions satisfying

c1 ≤ ϕ(x) ≤ c2, c1 ≤ ψ(x) ≤ c2 for a.a. x ∈ Ω
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with some positive constants c1, c2.
(A3). h : R→ R is a twice continuously differentiable function satisfying

h(η) ≥ 0, |h′′(η)| ≤ const|η|λ−1 for |η| > 1 where

1 < λ ≤ λ0 =
n

n− 2
if n ≥ 3, 1 < λ <∞ if n = 2.

(A4).H : QT×L2(QT )×Lp(QT )→ R is a function for which (t, x) 7→ H(t, x;u, z)
is measurable for all fixed u ∈ L2(Ω), z ∈ Lp(QT ), H has the Volterra property, i.e.
for all t ∈ [0, T ], H(t, x;u, z) depends only on the restriction of u and z to (0, t).
Further, the following inequality holds for all t ∈ [0, T ] and u ∈ L2(Ω), z ∈ Lp(QT ):∫

Ω

|H(t, x;u, z)|2dx ≤ const
[
‖z‖2Lp(QT ) + 1

] [∫ t

0

∫
Ω

h(u(τ))dxdτ +

∫
Ω

h(u)dx

]
;∫ t

0

[∫
Ω

|H(τ, x;u1, z)−H(τ, x;u2, z)|2dx
]
dτ ≤M(K, z)

∫ t

0

[∫
Ω

|u1 − u2|2dx
]
dτ

if ‖uj‖L∞(0,T ;V1) ≤ K
where for all fixed number K > 0, z 7→ M(K, z) ∈ R+ is a bounded (nonlinear)
operator.

Finally, (zk)→ z in Lp(QT ) implies

H(t, x;uk, zk)−H(t, x;uk, z)→ 0 in L2(QT ) uniformly if ‖uk‖L2(QT ) ≤ const.

(A5). F1 : QT ×Lp(QT )→ R is a function satisfying (t, x) 7→ F1(t, x; z) ∈ L2(QT ) for
all fixed z ∈ Lp(QT ) and (zk)→ z in Lp(QT implies that F1(t, x; zk)→ F1(t, x; z) in
L2(QT ).

Further, ∫ T

0

‖F1(τ, x; z)‖2L2(Ω)dτ ≤ const
[
1 + ‖z‖β1

Lp(QT )

]
with some constant β1 > 0.

(B1) The functions

aj : QT × Rn+1 × L2(QT )× Lp(QT )→ R (j = 0, 1, . . . n),

are measurable in (t, x) ∈ QT for all fixed ξ = (ξ0, ξ1, . . . , ξn) ∈ Rn+1, u ∈ L2(QT ),
z ∈ Lp(QT ) and continuous in ξ ∈ Rn+1 for all fixed u ∈ L2(QT ), z ∈ Lp(QT ) and
a.a. fixed (t, x) ∈ QT .

Further, if (uk) → u in L2(QT ) and (zk) → z in Lp(QT ) then for all ξ ∈ Rn+1,
a.a. (t, x) ∈ QT , for a subsequence

aj(t, x, ξ;uk, zk)→ aj(t, x, ξ;u, z) (j = 0, 1, . . . , n).,

(B2) For j = 0, 1, . . . , n

|aj(t, x, ξ;u, z)| ≤ g1(u, z)|ξ|p−1 + [k1(u, z)](t, x),

where g1 : L2(QT )× Lp(QT )→ R+ is a bounded, continuous (nonlinear) operator,

k1 : L2(QT )× Lp(QT )→ Lq(QT ) is continuous and

‖k1(u, z)‖Lq(QT ) ≤ const(1 + ‖u‖γL2(QT ) + ‖z‖p1Lp(QT ))

with some constants γ > 0, 0 < p1 < p− 1.
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(B3) The following inequality holds for all t ∈ [0, T ] with some constants c2 > 0,
c3 ≥ 0, β ≥ 0, γ1 ≥ 0 (not depending on t, u, z):

n∑
j=0

[aj(t, x, ξ;u, z)− aj(t, x, ξ?;u, z)](ξj − ξ?j ) ≥

c2

1 + ‖u‖βL2(QT ) + ‖z‖γ1Lp(QT )

|ξ − ξ?|p − c3|ξ0 − ξ?0 |2.

(B4) For all fixed u ∈ L2(QT ) the function

F2 : QT × L2(QT )→ R satisfies (t, x) 7→ F2(t, x;u) ∈ Lq(QT ),

‖F2(t, x;u)‖Lq(QT ) ≤ const
[
1 + ‖u‖γL2(QT )

]
(see (B2)) and

(uk)→ u in L2(QT ) implies F2(t, x;uk)→ F2(t, x;u) in Lq(QT ).

Finally,
max{(β1β)/2, γ1}+ max{(β1γ)/2, p1} < p− 1.

Theorem 2.1. Assume (A1) – (A5) and (B1) – (B4). Then for all u0 ∈ V1, u1 ∈ L2(Ω),
z0 ∈ L2(Ω) there exists u ∈ L∞(0, T ;V1) such that

u′ ∈ L∞(0, T ;L2(Ω)), u′′ ∈ L2(0, T ;V ?1 ) and z ∈ Lp(0, T ;V2), z′ ∈ Lq(0, T ;V ?2 )

such that u satisfies (1.1) in the sense: for a.a. t ∈ [0, T ], all v ∈ V1

〈u′′(t), v〉+ 〈Q(u(t)), v〉+

∫
Ω

ϕ(x)h′(u(t))vdx+

∫
Ω

H(t, x;u, z)vdx+ (2.1)∫
Ω

ψ(x)u′(t)vdx =

∫
Ω

F1(t, x; z)v)dx

and the initial conditions
u(0) = u0, u′(0) = u1. (2.2)

Further, u, z satisfy (1.2) in the sense: for a.a. t ∈ (0, T ), all w ∈ V2

〈z′(t), w〉+

∫
Ω

 n∑
j=1

aj(t, x,Dz(t), z(t);u, z)

Djwdx+ (2.3)

∫
Ω

a0(t, x,Dz(t), z(t);u, z)wdx =

∫
Ω

F2(t, x;u)wdx and

z(0) = z0. (2.4)

Proof. The proof is based on the results of [11], the theory of monotone operators
(see, e.g. [13]) and Schauder’s fixed point theorem as follows.

Consider the problem (2.1), (2.2) for u with an arbitrary fixed z = z̃ ∈ Lp(QT ).
According to [11] assumptions (A1) – (A5) imply that there exists a unique solution
u = ũ ∈ L∞(0, T ;V1) with the properties ũ′ ∈ L∞(0, T ;L2(Ω)), ũ′′ ∈ L2(0, T ;V ?1 )
satisfying (2.1) and the initial condition (2.2). Then consider problem (2.3) (2.4) for
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z with the above u = ũ and with z = z̃ functional terms (see (2.6)). According to
the theory of monotone operators (see, e.g., [13]) there exists a unique solution z ∈
Lp(0, T ;V2) of (2.3), (2.4) such that z′ ∈ Lq(0, T ;V ?2 ). By using the notation S(z̃) = z,
we shall show that the operator S : Lp(QT ) → Lp(QT ) satisfies the assumptions of
Schauder’s fixed point theorem: it is continuous, compact and there exists a closed
ball B0(R) ⊂ Lp(QT ) such that

S(B0(R)) ⊂ B0(R). (2.5)

Then Schauder’s fixed point theorem will imply that S has a fixed point z? ∈
Lp(0, T ;V2). Defining u? by the solution of (2.1), (2.2) with z = z?, functions u?,
z? satisfy (2.1) – (2.4).

Lemma 2.2. Consider problem (2.1), (2.2) for u with an arbitrary fixed z = z̃ ∈
Lp(QT ). Assumptions (A1) – (A5) imply that there exists a unique u = ũ ∈
L∞(0, T ;V1) such that ũ′ ∈ L∞(0, T ;L2(Ω)), ũ′′ ∈ L2(0, T ;V ?1 ) and (2.1), (2.2) are
satisfied.

Lemma 2.2 directly follows from Theorem 4.1 of [11].

Lemma 2.3. Consider the following modification of problem (2.3), (2.4) with arbitrary
fixed ũ ∈ L2(QT ), z̃ ∈ Lp(QT ): find z ∈ Lp(0, T ;V2) such that z′ ∈ Lq(0, T ;V ?2 ) and
for a.a. t ∈ [0, T ], all w ∈ V2

〈z′(t), w〉+

∫
Ω

 n∑
j=1

aj(t, x,Dz(t), z(t); ũ, z̃)

Djwdx+ (2.6)

∫
Ω

a0(t, x,Dz(t), z(t); ũ, z̃)wdx =

∫
Ω

F2(t, x; ũ)wdx,

z(0) = z0. (2.7)

Assumptions (B1) – (B4) imply that there exists a unique solution of (2.6), (2.7).

Proof. Let a > 0 be a fixed constant. A function z is a solution of (1.2), (2.4) if and
only if ẑ(t) = e−atz(t) satisfies

ẑ′(t)− e−at
n∑
j=1

Dj [aj(t, x, e
atDẑ(t), eatẑ(t); ũ, z̃)]+ (2.8)

e−ata0(t, x, eatDẑ(t), eatẑ(t); ũ, z̃) + aẑ(t) = e−atF2(t, x; ũ),

ẑ(0) = z0. (2.9)

We shall apply the theory of monotone operators to (2.8), (2.9) with sufficiently large
a > 0.

Define (with fixed ũ ∈ L2(QT ), z̃ ∈ Lp(QT ), t ∈ [0, T ]) operator Âũ,z̃ by

〈Âũ,z̃(ẑ), w〉 =

∫
Ω

e−at
n∑
j=1

aj(t, x, e
atDẑ(t), eatẑ(t); ũ, z̃)Djwdx+

∫
Ω

e−ata0(t, x, eatDẑ(t), eatẑ(t); ũ, z̃)wdx+ a

∫
Ω

ẑwdx,
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ẑ ∈ Lp(0, T ;V2), w ∈ V2.

By (B1), (B2) operator Âũ,z̃ : Lp(0, T ;V2) → Lq(0, T ;V ?2 ) is bounded and demi-
continuous (see, e.g. [13]). Further, it is uniformly monotone if a > 0 is sufficiently
large.

Indeed, by (B3), for arbitrary ẑ1, ẑ2 ∈ Lp(0, T ;V2)∫ T

0

〈Âũ,z̃(ẑ1)− Âũ,z̃(ẑ2), ẑ1 − ẑ2〉dt = (2.10)∫
QT

e−2at
n∑
j=1

[aj(t, x, e
atDẑ1(t), eatẑ1(t); ũ, z̃)−

aj(t, x, e
atDẑ2(t), eatẑ2(t); ũ, z̃)]eatDj(ẑ1 − z2)dtdx+∫

QT

e−2at[a0(t, x, eatDẑ1(t), eatẑ1(t); ũ, z̃)−

a0(t, x, eatDẑ2(t), eatẑ2(t); ũ, z̃)]eat(ẑ1 − ẑ2)dtdx ≥
c2

1 + ‖ũ‖βL2(QT ) + ‖z̃‖γ1Lp(QT )

∫
QT

e−2at[eat|Dẑ1 −Dẑ2|p + eat|ẑ1 − ẑ2|p]dtdx−

c3

∫
QT

|ẑ1 − ẑ2|2dtdx+ a

∫
QT

|ẑ1 − ẑ2|2dtdx ≥

c′2

1 + ‖ũ‖βL2(QT ) + ‖z̃‖γ1Lp(QT )

∫
QT

[|Dẑ1 −Dẑ2|p + |ẑ1 − ẑ2|p]dtdx

with some constant c′2 > 0 (depending on T ) if a > 0 is sufficiently large.
Consequently, according to the theory of monotone operators (see, e.g. [13])

problem (2.8), (2.9) for ẑ has a unique weak solution, thus (2.6), (2.7) has a unique
solution.

By using Lemmas 2.2, 2.3 we may define operator S : Lp(QT ) → Lp(QT ) as
follows. Let z̃ ∈ Lp(QT ) be an arbitrary element. By Lemma 2.2 there exists a unique
solution ũ of (2.1), (2.2). According to Lemma 2.3 there exists a unique solution z of
(2.6), (2.7). Operator S is defined by S(z̃) = z.

Lemma 2.4. The operator S : Lp(QT )→ Lp(QT ) is compact.

Proof. Let (z̃k) be a bounded sequence in Lp(QT ) and consider the (unique) solution
ũk of (2.1), (2.2) with fixed z = z̃k. We show that (ũk) is bounded in L∞(0, T ;V1)
and (ũ′k) is bounded in L∞(0, T ;L2(Ω)). Indeed, applying the arguments in the proof
of Theorem 2.1 in [11], one gets the solutions ũk of (2.1), (2.2) as the (weak) limit of
Galerkin approximations

ũmk(t) =
m∑
l=1

gklm(t)wl where gklm ∈W 2,2(0, T )

and w1, w2, . . . is a linearly independent system in V1 such that the linear combina-
tions are dense in V1, further, the functions ũmk satisfy (for j = 1, . . . ,m)

〈ũ′′mk(t), wj〉+ 〈Q(ũmk(t)), wj〉+

∫
Ω

ϕ(x)h′(ũmk(t))wjdx+ (2.11)
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Ω

H(t, x; ũmk, z̃k)wjdx+

∫
Ω

ψ(x)ũ′mk(t)wjdx =

∫
Ω

F1(t, x; z̃k)wjdx,

ũmk(0) = um0, ũ′mk(0) = um1 (2.12)

where um0, um1 (m = 1, 2, . . . ) are linear combinations of w1, w2, . . . wm, satisfying
(um0)→ u0 in V1 and (um1)→ u1 in L2(Ω) as m→∞.

Multiplying (2.11) by (gklm)′(t), summing with respect to j and integrating over
(0, t), by Young’s inequality we find

1

2
‖ũ′mk(t)‖2L2(Ω) +

1

2
〈Q(ũmk(t)), ũmk(t)〉+

∫
Ω

ϕ(x)h(ũmk(t))dx+ (2.13)∫ t

0

[∫
Ω

H(τ, x; ũmk, z̃k)ũ′mk(τ)dx

]
dτ +

∫ t

0

[∫
Ω

ψ(x)|ũ′mk(τ)|2dx
]
dτ =∫ t

0

[∫
Ω

F1(τ, x; z̃k)ũ′mk(τ)dx

]
dτ +

1

2
‖ũ′mk(0)‖2H +

1

2
〈Q(ũmk(0)), ũmk(0)〉+∫

Ω

ϕ(x)h(ũmk(0))dx ≤ 1

2

∫ T

0

‖F1(τ, x; z̃k)‖2L2(Ω)dτ +
1

2

∫ T

0

‖ũ′mk(τ)‖2L2(Ω) + const

where the constant is not depending on m, k, t. (See [11].)
By using (A2), (A4), (A5) and the Cauchy-Schwarz inequality, we obtain from

(2.13)
1

2
‖ũ′mk(t)‖2L2(Ω) +

c0
2
‖ũmk(t))‖2V1

+ c1

∫
Ω

h(ũmk(t))dx ≤ (2.14)∫ T

0

‖F1(τ, x; z̃k)‖2L2(Ω)dτ+

const

{
1 +

∫ t

0

‖ũ′mk(τ)‖2L2(Ω)dτ +

∫ t

0

[∫
Ω

h(ũmk(τ))dx

]
dτ

}
.

Consequently,

‖ũ′mk(t)‖2L2(Ω) +

∫
Ω

h(ũmk(t))dx ≤

const

{
1 +

∫ t

0

[‖ũ′mk(τ)‖2L2(Ω) +

∫
Ω

h(ũmk(τ))dx]

}
where the constant is not depending on k,m, t. Thus by Gronwall’s lemma

‖ũ′mk(t)‖2L2(Ω) +

∫
Ω

h(ũmk(t))dx ≤ const (2.15)

and so by (A1) and (2.14)

‖ũmk(t)‖V1
≤ const (2.16)

where the constants are not depending on k,m, t. The inequalities (2.15), (2.16) im-
ply that the weak limits ũk, ũ′k of (ũmk) and (ũ′mk), respectively, are bounded in
L∞(0, T ;V1), L∞(0, T ;L2(Ω)), respectively.

Consequently, by the well known compact imbedding theorem (see [5]) there is
a subsequence of (ũk), again denoted by (ũk), for simplicity, which is convergent in
L2(QT ) to some ũ and (ũk)→ ũ a.e. in QT .
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Consider the sequence of solutions zk of (2.6) (2.7) with ũ = ũk, z̃ = z̃k. We show
that the sequence zk is bounded in Lp(0, T ;V2). Indeed, for the functions ẑk = e−atzk
we have

〈ẑ′k, w〉+ 〈Âũk,z̃k(ẑk), w〉 = 〈e−atF2(t, x; ũk), w〉, (2.17)

thus, integrating (2.17) over (0, T ) with w = ẑk one obtains

1

2
‖ẑk(T )‖2L2(Ω) −

1

2
‖ẑk(0)‖2L2(Ω) +

∫ T

0

〈Âũk,z̃k(ẑk), ẑk〉dt = (2.18)∫ T

0

〈e−atF2(t, x; ũk), w〉dt.

Applying the inequality (2.10) to ẑ1 = ẑk and ẑ2 = 0, we obtain

const

1 + ‖ũk‖βL2(QT ) + ‖z̃k‖γ1Lp(QT )

∫
QT

[|Dẑk|p + |ẑk|p]dt ≤ (2.19)

∫ T

0

〈Âũk,z̃k(ẑk)− Âũk,z̃k(0), ẑk − 0〉dt =∫ T

0

〈Âũk,z̃k(ẑk), ẑk〉dt−
∫ T

0

Âũk,z̃k(0), ẑk〉dt.

By (2.18)∣∣∣∣∣
∫ T

0

〈Âũk,z̃k(ẑk), ẑk〉dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

0

〈e−atF2(t, x; ũk), w〉dt

∣∣∣∣∣+ const ≤ (2.20)

const‖F2(t, x; ũk)‖Lq(QT )‖ẑk‖Lp(QT )

and by (B2) ∣∣∣∣∣
∫ T

0

Âũk,z̃k(0), ẑk〉dt

∣∣∣∣∣ ≤ const‖ẑk‖Lp(QT ) (2.21)

Hence by (2.19), (2.20), (B4), (ẑk) is bounded in Lp(0, T ;V2) (as p > 1 and ‖ũk‖L2(QT ),
‖z̃k‖Lp(QT ) are bounded).

Further, the equality (2.17) implies that (ẑ′k) is bounded in Lq(0, T ;V ?2 ). So by
the well known compact imbedding theorem (see [5]) there is a subsequence of (ẑk)
which is convergent in Lp(QT ). Therefore, the corresponding subsequence of (zk) is
convergent, too in Lp(QT ).

Lemma 2.5. The operator S : Lp(QT )→ Lp(QT ) is continuous.

Proof. Assume that

(z̃k)→ z̃ in Lp(QT ). (2.22)

Now we show that for the solutions ũk of (2.1), (2.2) with z = z̃k

(ũk)→ ũ in L2(QT ) (2.23)

and a.e. in QT for a subsequence where ũ is the solution of (2.1), (2.2) with z = z̃.
In the proof of (2.23) we use the (uniqueness) Theorem 4.1 of [11]. Since (z̃k)

is bounded in Lp(0, T ;V2), (ũk) is bounded in L2(QT ) (see the proof of Lemma 2.4).
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Further, ũ and ũk are weak solutions of (1.1) (i.e. of (2.1) with z = z̃ and z = z̃k,
respectively and satisfy the initial conditions (2.2), thus

ũ′′(t) +Q(ũ(t)) + ϕ(x)h′(ũ(t)) +H(t, x; ũ, z̃)+ (2.24)

ψ(x)ũ′(t) = F1(t, x; z̃),

ũ′′k(t) +Q(ũk(t)) + ϕ(x)h′(ũk(t)) +H(t, x; ũk, z̃)+ (2.25)

ψ(x)ũ′k(t) = F1(t, x; z̃k) +H(t, x; ũk, z̃)−H(t, x; ũk, z̃k).

Theorem 4.1 of [11] implies that for the solutions ũ of (2.24) and ũk of (2.25) we have
for any s ∈ [0, T ] an estimation of the form

‖ũk(s)− ũ(s)‖2L2(Ω) ≤ const

∫
QT

∣∣∣∣∫ t

0

[F1(τ, x; z̃k)− F1(τ, x; z̃)]dτ

∣∣∣∣2 dtdx+

const

∫
QT

∣∣∣∣∫ t

0

[H(τ, x; ũk, z̃k)−H(τ, x; ũk, z̃)]dτ

∣∣∣∣2 dtdx
where the right hand side is converging to 0 as k →∞ by (A4), (A5).

So we have proved (2.23).
Now we show that (2.22), (2.23) imply:

(zk)→ z in Lp(QT ), i.e. (ẑk)→ ẑ in Lp(QT ) (2.26)

for the solutions of (2.6), (2.7) and (2.8), (2.9), respectively (in the case of zk, ẑk,
instead of ũ, z̃ we have ũk, z̃k). Since

〈(ẑk − ẑ)′, ẑk − ẑ〉+ 〈Âũk,z̃k(ẑk)− Âũ,z̃(ẑ), ẑk − ẑ〉 =

〈e−atF2(t, x; ũk)− e−atF2(t, x; ũ), ẑk − ẑ〉,
integrating over (0, T ) with respect to t, we find

1

2
‖ẑk(T )− ẑ(T )‖2L2(Ω) −

1

2
‖ẑk(0)− ẑ(0)‖2L2(Ω)+ (2.27)∫ T

0

〈Âũk,z̃k(ẑk)− Âũ,z̃(ẑ), ẑk − ẑ〉dt =∫ T

0

〈e−atF2(t, x; ũk)− e−atF2(t, x; ũ), ẑk − ẑ〉dt

where by (2.10) ∫ T

0

〈Âũk,z̃k(ẑk)− Âũ,z̃(ẑ), ẑk − ẑ〉dt = (2.28)∫ T

0

〈Âũk,z̃k(ẑk)− Âũk,z̃k(ẑ), ẑk − ẑ〉dt+

∫ T

0

〈Âũk,z̃k(ẑ)− Âũ,z̃(ẑ), ẑk − ẑ〉dt ≥

c′2

1 + ‖ũk‖βL2(QT ) + ‖z̃k‖γ1Lp(QT )

∫
QT

[|Dẑk −Dẑ|p + |ẑk − ẑ|p]dtdx+

∫ T

0

〈Âũk,z̃k(ẑ)− Âũ,z̃(ẑ), ẑk − ẑ〉dt.
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By (2.22), (B1), (B2), Vitali’s theorem and Hölder’s inequality

lim
k→∞

∫ T

0

〈Âũk,z̃k(ẑ)− Âũ,z̃(ẑ), ẑk − ẑ〉dt = 0 (2.29)

as ‖ẑk − ẑ‖Lp(QT ) is bounded. Similarly, the right hand side of (2.27) is coverging to
0 by (B4). Therefore, (2.27) – (2.29) imply (2.26).

Lemma 2.6. There is a closed ball

BR(0) = {z ∈ Lp(QT ) : ‖z‖Lp(QT ) ≤ R}

such that S(BR(0)) ⊂ BR(0).

Proof. According to (2.14) we have for the sequence (ũm) of Galerkin approximation
of the solution of (2.1), (2.2) (with z = z̃)

1

2
‖ũ′m(t)‖2L2(Ω) +

c0
2
‖ũm(t)‖2V1

+ c1

∫
Ω

h(ũm(t))dx ≤ (2.30)

1

2

∫ T

0

‖F1(τ, x; z̃)‖2L2(Ω)dτ + const

∫ t

0

‖ũ′m(τ)‖2L2(Ω)dτ+∫ t

0

[∫
Ω

h(ũm(τ))dx

]
dτ + const

where the constants are not depending on m, t, z̃. Hence, by Gronwall’s lemma one
obtains

‖ũ′m(t)‖2H +

∫
Ω

h(ũm(t))dx ≤ const

[
1 +

∫ T

0

‖F1(τ, x; z̃)‖2L2(Ω)dτ

]
+ (2.31)

const

∫ t

0

[
1 +

∫ T

0

‖F1(τ, x; z̃)‖2L2(Ω)dτ · e
t−s

]
ds =

const

[
1 +

∫ T

0

‖F1(τ, x; z̃)‖2L2(Ω)dτ

]
where the constants are independent of m, t, z̃. Thus by (2.30) and (A5) we find

‖ũm(t)‖2V1
≤ const

[
1 +

∫ T

0

‖F1(τ, x; z̃)‖2L2(Ω)dτ

]
≤ const

[
1 + ‖z̃‖β1

Lp(0,T ;V2)

]
which implies (for the solution ũ of (2.1), (2.2), the limit of (ũm))

‖ũ‖2L2(QT ) ≤ const
[
1 + ‖z̃‖β1

Lp(QT )

]
. (2.32)

On the other hand, similarly to (2.19) – (2.21), by (B2), (B4) we have for ẑ(t) =
e−atz(t) (where z is the solution of (2.3), (2.4))

const

1 + ‖ũ‖βL2(QT ) + ‖z̃‖γ1Lp(QT )

∫
QT

[|Dẑ|p + |ẑ|p]dt ≤

∫ T

0

〈Âũ,z̃(ẑ), ẑ〉dt−
∫ T

0

〈Âũ,z̃(0), ẑ〉dt ≤
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const + const‖F2(t, x; ũ)‖Lq(QT )‖ẑ‖Lp(QT ) + const‖k1(ũ, z̃)‖Lq(QT )‖ẑ‖Lp(QT ) ≤

const + const
(

1 + ‖ũ‖γL2(QT ) + ‖z̃‖p1Lp(QT )

)
‖ẑ‖Lp(QT ) ≤

const + const
(

1 + ‖z̃‖β1γ/2
Lp(QT ) + ‖z̃‖p1Lp(QT )

)
‖ẑ‖Lp(QT ) ≤

c̃1 + c̃2

(
1 + ‖z̃‖max{(β1γ)/2,p1}

Lp(QT )

)
‖ẑ‖Lp(QT ).

Thus for ‖ẑ‖Lp(QT ) ≥ c̃1/c̃2

‖ẑ‖p−1
Lp(QT ) ≤ const

[
1 + ‖ũ‖βL2(QT ) + ‖z̃‖γ1Lp(QT )

] [
1 + ‖z̃‖max{(β1γ)/2,p1}

Lp(QT )

]
≤ (2.33)

const

[(
1 + ‖z̃‖β1

Lp(QT )

)β/2
+ ‖z̃‖γ1Lp(QT )

]
·
[
1 + ‖z̃‖max{(β1γ)/2,p1}

Lp(QT )

]
≤

const[1 + ‖z̃‖δLp(QT )]

where

δ = max{(β1β)/2, γ1}+ max{(β1γ)/2, p1}. (2.34)

By (B4) δ < p− 1, thus for sufficiently large R

z̃ ∈ BR(0) =
{
z̃ ∈ Lp(QT ), ‖z̃‖Lp(QT ) ≤ R

}
implies

‖z‖Lp(QT ) ≤ R, i.e. z ∈ BR(0).

(The norm of ‖z‖Lp(QT ) can be estimated by ‖ẑ‖Lp(QT ), multiplied by a constant.)
So the proof of Lemma 2.6 is completed.

Finally, Lemmas 2.4 - 2.6 and Schauder’s fixed point theorem imply that S has
a fixed point and, consequently, there exists a solution of (2.1) – (2.4).

3. Examples

Let the operator Q be defined by

〈Qu, v〉 =

∫
Ω

 n∑
j,l=1

ajl(x)(Dlu)(Djv) + d(x)uv

 dx+

where ajl, d ∈ L∞(Ω), ajl = alj ,
∑n
j,l=1 ajl(x)ξjξl ≥ c0|ξ|2, d ≥ c0 with some positive

constant c0. Then, clearly, assumption (A1) is satisfied.
If h is a C2 function such that h(η) = |η|λ+1 if |η| > 1 then (A3)is satisfied.
The condition (A4) is satisfied e.g. if

H(t, x;u, z) = χ(t, x)g1(L1z)g2(L2u) where χ ∈ L∞(QT ),

L1 : Lp(0, T ;V2)→ L2(QT ), L2 : L2(QT )→ L2(QT )

are continuous linear operators (with the Volterra property); g1 is a globally Lipschitz
bounded function, g2 is a globally Lipschitz function. In the particular case when

L2 is an L2(QT )→ L∞(QT ) bounded linear operator (3.1)
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then g2 may be a locally Lipschitz function satisfying

|g2(η)| ≤ const|η|(λ+1)/2 for |η| > 1.

The operator L2 has the property (3.1) e.g. if

(L2u)(t, x) =

∫
Qt

K̃(t, x; τ, ξ)u(τ, ξ)dτdξ where∫
QT

|K̃(t, x; τ, ξ)|2dτdξ ≤ const for all (t, x) ∈ QT .

The operator F1 : QT × Lp(0, T ;V2)→ R may have the form

F1(t, x; z) = f1(t, x, L3z)

where f1(t, x, µ) is measurable in (t, x), continuous in µ and

|f1(t, x, µ)| ≤ const|µ|β1/2 + f̃1(t, x) where

0 ≤ β1 ≤ 2, f̃1 ∈ L2(QT ), L3 : Lp(0, T ;V2)→ L2(QT )

is a linear continuous operator. Then (A5) is fulfilled. In the particular case when

L3 is Lp(0, T ;V2)→ L∞(QT )

linear and continuous then β1 ≤ 2 is not assumed.
Now we formulate examples for aj satisfying (B1) – (B3):

aj(t, x, ξ;u, z) = α(t, x, L4u, L5z)ξj |ζ|p−2, j = 1, . . . , n where ζ = (ξ1, . . . ξn),

α(t, x, ν1, ν2) is measurable in (t, x), continuous in ν1, ν2 and satisfies

const

1 + |ν1|β + |ν2|γ1
≤ α(t, x, ν1, ν2) ≤ const(1 + |ν1|γ + |ν2|p1)

with some positive constants, L4, L5 : L2(QT ) → L∞(QT ) are continuous linear
operators,

a0(t, x, ξ;u, z) = α0(t, x, L6u, L7z)ξ0|ξ0|p−2 + α1(z),

where α0(t, x, ν1, ν2) is measurable in (t, x), continuous in ν1, ν2,

const

1 + |ν1|β + |ν2|γ1
≤ α0(t, x, ν1, ν2) ≤ const(1 + |ν1|γ + |ν2|p1)

with some positive constants, L6, L7 : L2(QT ) → L∞(QT ) are continuous linear
operators and α1 is a globally Lipschitz function. If the values of α, α0 are between
two positive constants then L4 − L7 may be L2(QT ) → L2(QT ) continuous linear
operators.

Finally, the function F2 : QT × L2(QT )→ R may have the form

F2(t, x;u) = f2(t, x, L8u)

where f2(t, x, µ) is measurable in (t, x), continuous in µ and

|f2(t, x, µ)| ≤ const|µ|γ + f̃2(t, x),

0 ≤ γ ≤ 1, f̃2 ∈ L2(QT ) and L8 : L2(QT )→ L2(QT )



On a system of nonlinear partial functional differential equations 189

is a continuous linear operator. Then (B4) is satisfied. In the particular case when

L8 is an L2(QT )→ L∞(QT ) bounded linear operator

then γ ≤ 1 is not assumed.

4. Solutions in (0,∞)

Now we formulate an existence theorem with respect to solutions for t ∈ (0,∞).
Denote by Lploc(0,∞;V1) the set of functions u : (0,∞) → V1 such that for each
fixed finite T > 0, their restrictions to (0, T ) satisfy u|(0,T ) ∈ Lp(0, T ;V1) and let
Q∞ = (0,∞)×Ω, Lαloc(Q∞) the set of functions u : Q∞ → R such that u|QT

∈ Lα(QT )
for any finite T .

Now we formulate assumptions on H, F1, aj , F2.

(Ã4) The function H : Q∞×L2
loc(Q∞)×Lploc(Q∞)→ R is such that for all fixed

u ∈ L2
loc(Q∞), z ∈ Lploc(Q∞) the function (t, x) 7→ H(t, x;u, z) is measurable, H has

the Volterra property (see (A4)) and for each fixed finite T > 0, the restriction HT of
H to QT × L2(QT )× Lp(QT ) satisfies (A4).
Remark. Since H has the Volterra property, this restriction HT is well defined by the
formula

HT (t, x; ũ, z̃) = H(t, x;u, z), (t, x) ∈ QT ũ ∈ L2(QT ), z̃ ∈ Lp(QT )

where u ∈ L2
loc(Q∞), z ∈ Lploc(Q∞) may be any function satisfying u(t, x) = ũ(t, x),

z(t, x) = z̃(t, x) for (t, x) ∈ QT .

(Ã5) F1 : Q∞ × Lploc(Q∞) → R has the Volterra property and for each fixed
finite T > 0, the restriction of F1 to (0, T ) satisfies (A5).

(B̃) aj : Q∞ × Rn+1 × L2
loc(Q∞) × Lploc(Q∞) → R (j = 0, 1, . . . , n) have the

Volterra property and for each finite T > 0, their restrictions to (0, T ) satisfy (B1) –
(B3).

(B̃4) F2 : Q∞ × L2
loc(Q∞) → R has the Volterra property and for each fixed

finite T > 0, the restriction of F2 to (0, T ) satisfies (B4).

Theorem 4.1. Assume (A1) – (A3), (Ã4), (Ã5), (B̃), (B̃4) . Then for all u0 ∈ V1,
u1 ∈ L2(Ω) there exist

u ∈ L∞loc(0,∞;V1), z ∈ Lploc(0,∞;V2) such that

u′ ∈ L∞loc(0,∞;L2(Ω)), u′′ ∈ L2
loc(0,∞;V ?1 ), z′ ∈ Lqloc(0,∞;V ?2 ),

(2.1) – (2.4) hold for a.a. t ∈ (0,∞) and the initial condition (2.2) is fulfilled.
Assume that the following additional conditions are satisfied: there exist H∞,

F∞1 ∈ L2(Ω), u∞ ∈ V1, a bounded function β̃, belonging to L2(0,∞;L2(Ω)) such that

Q(u∞) = F∞1 −H∞, (4.1)

|H(t, x;u, z)−H∞| ≤ β̃(t, x), |F1(t, x; z)− F∞1 (x)| ≤ β̃(t, x) (4.2)

for all fixed u ∈ L2
loc(Q∞), z ∈ Lploc(Q∞)). Further, there exist functions

a∞j : Ω× Rn+1 × L2(Ω)→ R, j = 1, . . . , n F∞2 : Ω× L2(Ω)→ R
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such that for each fixed z0 ∈ V2, z ∈ Lploc(Q∞) and u ∈ L2
loc(Q∞), w0 ∈ V1 with the

property

lim
t→∞

‖u(t)− w0‖L2(Ω) = 0

for the functions

ϕj(t) = ‖aj(t, x,Dz0, z0;u, z)− a∞j (x,Dz0, z0;w0)‖Lq(Ω), j = 0, 1, . . . , n, (4.3)

ψ(t) = ‖F2(t, x;u)− F∞2 (x;w0)‖Lq(Ω) (4.4)

we have

lim
t→∞

ϕj(t) = 0, lim
t→∞

ψ(t) = 0. (4.5)

Finally, (B3) is satisfied such that the following inequalities hold for all t > 0 with
constants c2 > 0, β > 0, not depending on t:

n∑
j=0

[aj(t, x, ξ;u, z)− aj(t, x, ξ?;u, z)][ξj − ξ?j ] (4.6)

c2

1 + ‖u‖βL2(Qt\Qt−a)

|ξ − ξ?|p

with some fixed a > 0 (finite delay).
Then for the above solutions u, z we have

u ∈ L∞(0,∞;V1), (4.7)

‖u′(t)‖L2(Ω) ≤ conste−c1t (4.8)

where c1 is given in (A2) and there exists w0 ∈ V1 such that

u(T )→ w0 in L2(Ω) as T →∞, ‖u(T )− w0‖L2(Ω) ≤ conste−c1T (4.9)

and w0 satisfies

Q(w0) + ϕh′(w0) = F∞1 −H∞. (4.10)

Finally, there exists a unique solution z0 ∈ V2 of

n∑
j=1

∫
Ω

a∞j (x,Dz0, z0;w0)Djvdx+

∫
Ω

a∞0 (x,Dz0, z0;w0)vdx = (4.11)

∫
Ω

F∞2 (x;w0)vdx for all v ∈ V2

(where w0 is the solution of (4.10)) and

lim
t→∞

‖z(t)− z0‖L2(Ω) = 0, lim
T→∞

∫ T+b

T−b
‖z(t)− z0‖pV2

dt = 0 (4.12)

for arbitrary fixed b > 0. If

ϕj , ψ ∈ Lq(0,∞) then z ∈ Lp(0,∞;V2). (4.13)
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Proof. Let (Tk)k∈N be a monotone increasing sequence, converging to +∞. According
to Theorem 2.1, there exist solutions uk, zk of (2.1) – (2.4) for t ∈ (0, Tk). The Volterra
property of H, F1, aj , F2 implies that the restrictions of uk, zk to t ∈ (0, Tl) with
Tl < Tk satisfy (2.1) – (2.4) for t ∈ (0, Tl).

Now consider the restrictions uk|(0,T1), zk|(0,T1), k = 2, 3, . . . . Applying (2.33),
(2.34) and δ < p− 1 to T = T1 and z̃ = zk|(0,T1) we obtain that the sequence(

zk|(0,T1)

)
k∈N is bounded in Lp(QT1

) (4.14)

thus by Lemma 2.4 there is a subsequence (z1k)k∈N of (zk)k∈N such that the sequence
of restrictions (z1k|(0,T1))k∈N is convergent in Lp(QT1).

Now consider the restrictions z1k|(0,T2) By using the above arguments, we find
that there exists a subsequence (z2k)k∈N of (z21)k∈N such that (z2k|(0,T2))k∈N is con-
vergent in Lp(QT2

).
Thus for all l ∈ N we obtain a subsequence (zlk)k∈N of (zk)k∈N such that

(zlk|(0,Tl))k∈N is convergent in Lp(QTl
). Then the diagonal sequence (zkk)k∈N is a

subsequence of (zk)k∈N such that for all fixed l ∈ N, (zkk|(0,Tl))k∈N is convergent in
Lp(QTl

) to some z? ∈ Lploc(Q∞). Since zll is a fixed point of S = Sl : Lp(QTl
) →

Lp(QTl
) and Sl is continuous thus the limit z?|(0,Tl) in Lp(QTl

) of (zkk|(0,Tl))k∈N is a
fixed point of S = Sl.

Consequently, the solutions u?l of (2.1), (2.2) when z is the restriction of z? to
(0, Tl) and the restriction of z? to (0, Tl) satisfy (2.1) – (2.4) for t ∈ (0, Tl). Since
for m < l, u?l |(0,Tm) = u?m (by the Volterra property of H, F1, aj , F2), we obtain

u? ∈ L2
loc(Q∞) such that for all fixed l, u?|(0,Tl), z

?|(0,Tl) satisfy (2.1) – (2.4) for
t ∈ (0, Tl), so the first part of Theorem 4.1 is proved.

Now assume that the additional conditions (4.1) - (4.6) are satisfied. Then we
obtain (4.7) – (4.10) for u = u?, z = z? by using the arguments of the proof of
Theorem 3.2 in [11]. For convenience we formulate the main steps of the proof.

The sequence (zkk)|k∈N is bounded in Lp(0, Tl;V2) for each fixed l by (2.19) –
(2.21), (B4), (4.14)), consequently, from (2.13) (with z̃k = zkk) we obtain for the
solutions ukk of (2.1), (2.2) with z̃ = zkk (since ukk is the limit of the Galerkin
approximations ũmk)

1

2
‖u′kk(t)‖2H +

1

2
〈Q(ukk(t)), ukk(t)〉+

∫
Ω

ϕ(x)h(ukk(t))dx+ (4.15)∫ t

0

[∫
Ω

ψ(x)|u′kk(τ)|2dx
]
dτ +

∫ t

0

[∫
Ω

H(τ, x;ukk, zkk)u′kk(τ)dx

]
dτ =∫ t

0

[∫
Ω

F1(τ, x; zkk)u′kk(τ)dx

]
dτ +

1

2
‖u′kk(0)‖2H +

1

2
〈Q(ukk(0)), ukk(t)〉+∫

Ω

ϕ(x)h(ukk(0))dx

for all t > 0. Hence we find by (4.1), (4.2) and Young’s inequality for wkk = ukk−u∞
1

2
‖w′kk(t)‖2L2(Ω) +

c0
2
‖ukk(t))‖2V1

+ c1

∫
Ω

h(ukk(t))dx+ const

∫ t

0

[∫
Ω

|w′kk|2dx
]
dτ ≤

(4.16)
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const

{∫ t

0

‖F1(τ, x; zkk)− F∞1 ‖2Hdτ +

∫ t

0

‖H(τ, x;ukkzkk)−H∞‖2Hdτ
}

+

ε

∫ t

0

[∫
Ω

|w′kk|2dx
]
dτ +

1

2
‖u′kk(0)‖2H +

1

2
〈Q(ukk(0)), ukk(0)〉+ c2

∫
Ω

h(ukk(0))dx ≤

ε

∫ t

0

[∫
Ω

|w′kk|2dx
]
dτ + const + C(ε)‖β̃‖2L2(0,∞;H).

Choosing sufficiently small ε > 0, we obtain∫ t

0

[∫
Ω

|w′kk|2dx
]
dτ ≤ const (4.17)

and thus by (4.16)

‖u′kk(t)‖2L2(Ω) + c̃

∫ t

0

‖u′kk(τ)‖2L2(Ω)dτ ≤ c
?

with some positive constants c̃ and c? not depending on k and t ∈ (0,∞). Hence by
Gronwall’s lemma we obtain (4.8) and by (4.16) we find (4.7).

It is not difficult to show that

‖u(T2)− u(T1)‖H ≤
∫ T2

T1

‖u′(t)‖Hdt (4.18)

(see [11]), thus (4.8) implies (4.9) and by u ∈ L∞(0,∞;V1), the limit w0 of u(t) as
t→∞ must belong to V1.

In order to prove (4.10) we apply equation (1.1) to vχTk
(t) with arbitrary fixed

v ∈ V1 where limk→∞(Tk) = +∞ and

χTk
(t) = χ(t− Tk), χ ∈ C∞0 , suppχ ⊂ [0, 1],

∫ 1

0

χ(t)dt = 1.

Then by (4.8) one obtains (4.10) as k →∞.
Now we show that there exists a unique solution z0 ∈ V2 of (4.11). This statement

follows from the fact that the operator (applied to z0 ∈ V2) on the left hand side of
(4.11) is bounded, demicontinuous and uniformly monotone (see, e.g. [13]) by (B1),
(B2), (4.9), (4.5), (4.6).

Finally, we show (4.12). By (4.6) we have

1

2

d

dt
‖z(t)− z0‖2H +

c2
1 + ‖u‖L2(Qt\Qt−a)

‖z(t)− z0‖pV2
≤ (4.19)

∫
Ω

n∑
j=1

[aj(t, x,Dz, z;u, z)− aj(t, x,Dz0, z0;u, z)](Djz −Djz0)dx+∫
Ω

[a0(t, x,Dz, z;u, z)− a0(t, x,Dz0, z0;u, z)](z − z0)dx =∫
Ω

[F2(t, x;u)− F∞2 (x,w0)](z − z0)dx−∫
Ω

n∑
j=1

[aj(t, x,Dz0, z0;u, z)− a∞j (x,Dz0, z0;w0)](Djz −Djz0)dx−
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Ω

[a0(t, x,Dz0, z0;u, z)− a∞0 (t, x,Dz0, z0;w0)](z − z0)dx ≤

C(ε)‖F2(t, x;u)− F∞2 (x,w0)‖Lq(Ω) + ε‖z(t)− z0‖Lp(Ω)+

C(ε)

n∑
j=1

‖aj(t, x,Dz0, z0;u, z)− a∞j (x,Dz0, z0;w0)‖qLq(Ω) + ε‖Djz(t)−Djz0‖pLp(Ω)+

C(ε)‖a0(t, x,Dz0, z0;u, z)− a∞0 (x,Dz0, z0;w0)‖qLq(Ω) + ε‖z(t)− z0‖pLp(Ω).

Since ‖u‖βL2(Qt\Qt−a) is bounded for t ∈ (0,∞) by (4.9) and

‖z(t)− z0‖V2 ≥ const‖z(t)− z0‖L2(Ω)

with some positive constant, thus by (4.3) – (4.5), (4.19) with sufficiently small ε > 0
we obtain for

y(t) = ‖z(t)− z0‖2H
the inequality

y′(t) + c?[y(t)]p/2 ≤ g(t) (4.20)

where c? is a positive constant and lim∞ g = 0.
The inequality (4.20) implies the first part of (4.12):

lim
∞
y = 0 (4.21)

(see [10]). Integrating (4.19) with respect to t over (T − b, T + b) we obtain the second
part of (4.12) by (4.21). Integrating (4.19) with respect to t over (0, T ), by (4.21) we
obtain (4.13) as T →∞.
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