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On a system of nonlinear partial functional
differential equations of different types

Léaszlé Simon

Abstract. We consider a system of a semilinear hyperbolic functional differential
equation (where the lower order terms contain functional dependence on the
unknown function) and a quasilinear parabolic functional differential equation
with initial and boundary conditions. Existence of weak solutions for ¢ € (0,7
and for ¢ € (0,00) will be shown and some qualitative properties of the solutions
in (0, co) will be formulated.
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1. Introduction

In the present paper we consider weak solutions of the following system of equa-
tions:

u (1) + Qu(t)) + p(x)h (u(t)) + H(t, z;u, 2) + (z)u'(t) = Fi(t, z; 2), (1.1)

n
2 (t) — Z Djla;(t,z, Dz(t), 2(t); u, 2)] + ao(t, z, Dz(t), 2(t); u, z) = Fo(t,z;u) (1.2)
j=1
(t,x) € Qr = (0,T) x
where Q@ C R” is a bounded domain and we use the notations u(t) = u(t, x), z(t) =
2(t,r) v = Dy, 2/ = Dyz v = D?u, Dz = (D1z,...,D,z), Q may be e.g. a
linear second order symmetric elliptic differential operator in the variable x; h is a
C? function having certain polynomial growth, H contains nonlinear functional (non-
local) dependence on u and z, with some polynomial growth and F} contains some
functional dependence on z. Further, the functions a; define a quasilinear elliptic
differential operator in = (for fixed t) with functional dependence on u and z. Finally,
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F5 may non-locally depending on u. (The system (1.1), (1.2) consists of a semilinear
hyperbolic functional equation and a parabolic functional equation.)

This paper was motivated by some problems which were modelled by systems
consisting of (functional) differential equations of different types. In [4] S. Cinca in-
vestigated a model, consiting of an elliptic, a parabolic and an ordinary nonlinear
differential equation, which arise when modelling diffusion and transport in porous
media with variable porosity. In [6] J.D. Logan, M.R. Petersen and T.S. Shores consid-
ered and numerically studied a similar system which describes reaction-mineralogy-
porosity changes in porous media with one-dimensional space variable. J. H. Merkin,
D.J. Needham and B.D. Sleeman considered in [7] a system, consisting of a non-
linear parabolic and an ordinary differential equation, as a mathematical model for
the spread of morphogens with density dependent chemosensitivity. In [3], [8], [9] the
existence of solutions of such systems were studied.

In Section 2 the existence of weak solutions will be proved for ¢t € (0,T), in
Section 3 some examples will be shown and in Section 4 we shall prove existence and
certain properties of solutions for ¢ € (0, 00).

2. Solutions in (0,7")

Denote by 2 C R” a bounded domain having the uniform C' regularity property
(see [1]), Qr = (0,T) x Q. Denote by WP (Q) the Sobolev space of real valued
functions with the norm

n 1/p
= | [ (X iDsup sty o) 2 <p<.
o \ i

The number ¢ is defined by 1/p + 1/q = 1. Further, let V; € W12(Q) and V5 C
WP (§2) be closed linear subspaces containing C5°(£2)), V;* the dual spaces of V;, the
duality between V;* and V; will be denoted by (-, -), the scalar product in L2(Q2) will

be denoted by (-,-). Finally, denote by L”(0,T;V;) the Banach space of the set of
measurable functions u : (0,T) — V; with the norm

T
lallzotozers) = [ / ||u<t>||f¢jdt]

and L*>(0,T;V;), L>=(0,T; L*(R)) the set of measurable functions u : (0,7) — Vj, u :
(0,T) — L*(), respectively, with the L>(0,7") norm of the functions ¢ — [Ju(t)|v;,
t = |lu(t)| L2 (), respectively.

Now we formulate the assumptions on the functions in (1.1), (1.2).

(A1). Q : Vi — V¥ is a linear continuous operator such that

(Qu,v) = (Qu,u),  (Qu,u) > collull3,
for all u,v € V7 with some constant ¢y > 0.
(A2). ¢, : Q — R are measurable functions satisfying

1/p

1 <o) <co, ¢ <P(x) <eyforaa xze
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with some positive constants ¢y, co.
(A3). h: R — R is a twice continuously differentiable function satisfying

h(n) >0, |h"(n)| < const|n|*~t for || > 1 where
1< A< =

nQifnZS, l<A<ooifn=2

(A4). H : Qrx L*(Q1)x LP(Qr) — R is a function for which (¢, z) — H (¢, x;u, 2)
is measurable for all fixed u € L?(Q), z € LP(Qr), H has the Volterra property, i.e.
for all t € [0,T], H(t,x;u,z) depends only on the restriction of u and z to (0,t).
Further, the following inequality holds for all ¢ € [0,T] and u € L*(2), 2z € LP(Q7):

/|Ht x;u, 2)|2dr < const [||zHLp(QT)+1 {/ /h dxdT-i-/h dx};
/ [/ |H (7, x;u1,2) — H(T,2; U2, 2)]| dw] dr < M(K,z) / {/ |ur — us| dm} dr
0o L/a

if [JujllLoeo,7v) < K

where for all fixed number K > 0, z — M(K,z) € R is a bounded (nonlinear)
operator.

Finally, (z;) — z in LP(Qr) implies

H(t, x5 up, z) — H(t, 23 u,2) — 0 in L*(Qr) uniformly if ||ug|r2(g,) < const.

(As). F1 : Qr x LP(Qr) — R is a function satisfying (¢,z) — Fy(t,x;2) € L*(Qr) for
all fixed z € LP(Qr) and (zx) — z in LP(Qr implies that Fy (¢, z; z;) = Fi(t,z;2) in
L*(Qr).

Further,

T
/ | Fi (7, a5 z)||L2(Q)d7' < const [1 + ||z||Lp(QTJ
0

with some constant 8; > 0.
(B1) The functions
a;: QT x R % LQ(QT) X LP(QT) —R (] =0,1,.. .n)7
are measurable in (t,x) € Qr for all fixed & = (&,&1,...,&,) € R uw e L3(Qr),
z € LP(Qr) and continuous in ¢ € R"™! for all fixed u € L?(Qr), z € LP(Q7) and
a.a. fixed (t,z) € Qr.
Further, if (uy) — v in L?(Qr) and (2x) — z in LP(Q7) then for all £ € R
a.a. (t,x) € Qr, for a subsequence
aj(tvxag;ukv Zk) — aj(ta x»&;uﬂ Z) (J = 07 1; cee ,’I’L).,
(Bg) For j =0,1,...,n
laj(t, @, & u, 2)| < g1(u, 2) [P + [k (u, 2)](t, @),
where g1 : L?(Q7) x LP(Qr) — R* is a bounded, continuous (nonlinear) operator,
ki : L*(Qr) x LP(Qr) — L%(Qr) is continuous and
(11 (u, )l La(@qry < const(L+ [Jul|7 L2Qr) T ||Z||Lp Qr) )
with some constants v > 0,0 <p; <p—1.
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(B3) The following inequality holds for all ¢ € [0, T] with some constants ¢ > 0,
cs >0,5>0,7 >0 (not depending on ¢, u, 2):
Z[a’j(tv xz, f; u, Z) - a’j(tv xz, 'g*; u, Z)](f] - g]*) Z
§=0
C2

€ =& — esléo — &5
Ll gy + 1212 o)
(By) For all fixed u € L?(Qr) the function

Fy: Qr x L*(Qr) — R satisfies (¢, ) — Fa(t,x;u) € LYQr),

| Falt, 230) oy < const 1+ [lulFaq, |
(see (Bz)) and
(ug) — w in L*(Qr) implies Fy(t, x;up) — Fo(t, z;u) in LYQ7).
Finally,
max{(418)/2,71} + max{(517)/2,;m} <p— 1.

Theorem 2.1. Assume (A1) — (As) and (By) — (Bs). Then for allug € V1, u1 € L?(Q),
20 € L2(Q) there exists u € L>(0,T;V;) such that

u' € L®(0,T; L*()), " € L*(0,T; V) and z € LP(0,T;Vs), 2’ € LY0,T;Vy)
such that u satisfies (1.1) in the sense: for a.a. t € [0,T], allv € V}

(' (0).0) + Q). ) + [

gp(m)h’(u(t))vdm—i—/ H(t,x;u, z)vde+ (2.1)
Q Q

/Qz/J(x)u’(t)vdm:/QFl(t,x;z)v)dx

and the initial conditions
w(0) = ug, u'(0) = u. (2.2)
Further, u, z satisfy (1.2) in the sense: for a.a. t € (0,T), all w € V3

(), w) + /Q 3" a(t,, D2(0), 2(0)50,2) | Dywda+ (2.3)

/ao(t,x,Dz(t),z(t);u,z)wdx:/Fg(t,x;u)wdx and
Q Q

z(0) = 2. (2.4)

Proof. The proof is based on the results of [11], the theory of monotone operators
(see, e.g. [13]) and Schauder’s fixed point theorem as follows.

Consider the problem (2.1), (2.2) for v with an arbitrary fixed z = Z € LP(Qr).
According to [11] assumptions (A;) — (As) imply that there exists a unique solution
u =4 € L°(0,T;V;) with the properties @' € L>(0,T;L*(Q)), @’ € L*(0,T;Vy)
satisfying (2.1) and the initial condition (2.2). Then consider problem (2.3) (2.4) for
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z with the above v = @ and with z = Z functional terms (see (2.6)). According to
the theory of monotone operators (see, e.g., [13]) there exists a unique solution z €
LP(0,T; V) of (2.3), (2.4) such that 2’ € L1(0,T; Vy). By using the notation S(2) = z,
we shall show that the operator S : LP(Qr) — LP(Qr) satisfies the assumptions of
Schauder’s fixed point theorem: it is continuous, compact and there exists a closed
ball Bo(R) C LP(Qr) such that

S(Bo(R)) C Bo(R). (25)

Then Schauder’s fixed point theorem will imply that S has a fixed point z* €
L?(0,T;V3). Defining u* by the solution of (2.1), (2.2) with z = 2*, functions u*,
z* satisfy (2.1) — (2.4).

Lemma 2.2. Consider problem (2.1), (2.2) for uw with an arbitrary fived z = %
LP(Qr). Assumptions (A1) — (As) imply that there exists a unique u =
L>(0,T; V1) such that @ € L*(0,T;L?(Q)), @’ € L?>(0,T;V}*) and (2.1), (2.2) are
satisfied.

S
S

Lemma 2.2 directly follows from Theorem 4.1 of [11].

Lemma 2.3. Consider the following modification of problem (2.3), (2.4) with arbitrary
fized @ € L*(Qr), 2 € LP(Qr): find z € LP(0,T; V2) such that 2’ € L4(0,T;Vs) and
for a.a. t €[0,T], all w € V

n

(' (), w) + / > aj(t,x, Dx(t), 2(t); i, 2) | Djwdz+ (2.6)

Qi3

/ao(t,a:,Dz(t),z(t);ﬂ,i)wdm:/Fg(t,x;ﬂ)wdx,
Q Q

2(0) = 2. (2.7)
Assumptions (B1) — (Ba) imply that there exists a unique solution of (2.6), (2.7).

Proof. Let a > 0 be a fixed constant. A function z is a solution of (1.2), (2.4) if and
only if 2(t) = e~ 2(t) satisfies

F(t)—e Z Djla;(t, z,e™ DA(t),e™2(t); 4, 2)|+ (2.8)
j=1
e ag(t,x,e™DA(t),e™2(t); @, 2) + a2(t) = e " Fy(t, x; @),
2(0) = 2. (2.9)

We shall apply the theory of monotone operators to (2.8), (2.9) with sufficiently large
a > 0.
Define (with fixed @ € L2(Q7), Z € LP(Q7), t € [0,T]) operator Az s by

(A :(3), w) :/e_“tZaj(t,x,e“tDé(t)7e“t2(t);ﬂ72)Djwch+
Q :
Jj=1
e "ag(t,r, e D2(t),e" 2(t); 4, Z)wdw + a/ Zwdx,
Q

S~
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2 e P(0,T; Vo), w e Va.
By (Bi), (By) operator Ag s : LP(0,T;Va) — L%(0,T;Vy) is bounded and demi-
continuous (see, e.g. [13]). Further, it is uniformly monotone if a > 0 is sufficiently

large.
Indeed, by (Bs3), for arbitrary 21, 25 € LP(0,T;V3)

T
/0 (Anz(81) — A z(%2), 51 — Bo)dt = (2.10)

/ e—2atZ[aj(t,x7eatD21(t)’eat21(t);’[L,Z)_

T j=1

a;j(t,z, e D2o(t), e 25(t); @, 2)]e™ Dj (%1 — 2z2)dtdz+
/ e 2% [ag(t, z, e D (1), e 2 (t); 11, ) —
T
ao(t,z,e™ D2y (t), e™ 25(t); @, 2)]e™ (31 — 22)dtdr >

— R = / e 2™ D2y — D3P + |5 — 2o |P)dtda—
1+ ”uHL?(QT) + ||Z||LP(QT) Qr

63/ ‘21 — 22|2dtd.73 + a/ ‘7:’1 — 22|2dtd$ >
T T

/
Co

D?:“l — DZAJQ p + ?:“1 — 22 Pldtdx
T+ llEagn + El e L) Tl
with some constant ¢}, > 0 (depending on T') if a > 0 is sufficiently large.

Consequently, according to the theory of monotone operators (see, e.g. [13])
problem (2.8), (2.9) for Z has a unique weak solution, thus (2.6), (2.7) has a unique
solution.

By using Lemmas 2.2, 2.3 we may define operator S : LP(Qr) — LP(Qr) as
follows. Let Z € LP(Qr) be an arbitrary element. By Lemma 2.2 there exists a unique
solution @ of (2.1), (2.2). According to Lemma 2.3 there exists a unique solution z of
(2.6), (2.7). Operator S is defined by S(Z) = z.

Lemma 2.4. The operator S : LP(Qr) — LP(Qr) is compact.

Proof. Let (Z;) be a bounded sequence in LP(Qr) and consider the (unique) solution
ay of (2.1), (2.2) with fixed z = Z,. We show that (@) is bounded in L*(0,T; V)
and (@},) is bounded in L>(0,T; L?(12)). Indeed, applying the arguments in the proof
of Theorem 2.1 in [11], one gets the solutions @y, of (2.1), (2.2) as the (weak) limit of
Galerkin approximations

m
Ui (t) = Zglkm(t)wl where g € W22(0,T)

1=1
and wi,we, ... is a linearly independent system in V; such that the linear combina-
tions are dense in Vi, further, the functions @, satisfy (for j =1,...,m)

(U (1), W) + (Q(Umi(t)), w;) +/ﬂ@($)h'(ﬂmk(t))wjda:+ (2.11)
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/H(t,x;ﬂmk,ik)wjder/w(x)ﬂ;nk(t)wjdx:/Fl(t,x;ik)wjdx,
Q Q Q

Uk (0) = Um0, Uy (0) = Upn1 (2.12)
where upmo, um1 (m = 1,2,...) are linear combinations of w, ws, ... w,, satisfying
(Umo) — uo in Vi and (up1) — ug in L2(Q) as m — oo.

Multiplying (2.11) by (gk,)'(t), summing with respect to j and integrating over
(0,%), by Young’s inequality we find
1

s Ol + 5 (Qinn(®). o) + [ plahimsl)dar  (213)

/ot [ st ) (ie] [ t [ va@litstnpe | ar =

/0 [ / Fi(r,z; zwa:nk(r)dx} 1+ S O + 5{Q0e(0)), e (0))+

i I . .
| et@mm )i < 5 [ IRz i+ 5 [ 1) o) + cons

where the constant is not depending on m, k,t. (See [11].)
By using (A4s), (A4), (As) and the Cauchy-Schwarz inequality, we obtain from
(2.13)

1, . co - -
s )iy + SN, + 1 [ M) < (2.14)

T
/ 1P (7, 23 52+

const{1+/0t ||ﬂ;;(7)%2(9)d7+/0t [/Qh(ﬂmk(r))dx} dT}.

Consequently,

e (1) 20 + / Wl (£)) i <

comst {1+ [ () ey + | iz}

where the constant is not depending on k, m,t. Thus by Gronwall’s lemma
||ﬂ’mk(t)||%2(g) +/ h(tpmp(t))dz < const (2.15)
Q

and so by (A1) and (2.14)

|@mi (t)]|v, < const (2.16)
where the constants are not depending on k, m,t. The inequalities (2.15), (2.16) im-
ply that the weak limits iy, @) of (Umk) and (4@, ), respectively, are bounded in
L°°(0,T; V1), L°°(0,T; L?(£2)), respectively.

Consequently, by the well known compact imbedding theorem (see [5]) there is
a subsequence of (i), again denoted by (), for simplicity, which is convergent in

L?(Q7) to some % and (4x) — @ a.e. in Qr.
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Consider the sequence of solutions zy, of (2.6) (2.7) with @ = @y, Z = Z;. We show

that the sequence zj, is bounded in LP(0,T; V2). Indeed, for the functions 25 = e~z

we have
(2o w) + (Aay 2, (2), w) = (™ " Fa(t, 23 1), w), (2.17)
thus, integrating (2.17) over (0,7T) with w = 2 one obtains

1. 1,. T L
§||Zk(T)||2L2(Q) - §||Zk(0)H%z(Q) +/0 (Aay 2, (38), 2r)dt = (2.18)

T
/(e*“th(t,x;ﬁk),wMt.
0
Applying the inequality (2.10) to 2, = 2; and 23 = 0, we obtain

const

/ (D[P + |2[P]dt < (2.19)
1+ ||Uk||L2 Q) + sz”Lp(Q

T
| i) = sy 2,0, 20 - 0)dt =
0
T . T R
/(Aak,zk(fk)afwdt—/ Az . (0), 2 )dt.
0 0

By (2.18)
T . T
/ (Any.z (o), 200t | < / (=9t Fy(t, @ i), w)dt| + const < (2.20)
0 0
const|| F> (¢, 25 @) || o (Qr) 12kl Lo (@r)
and by (Bs)
Aak’gk(0)72k>dt SCODStHé}CHLp(QT) (221)

Hence by (2.19), (2.20), (Ba), () is bounded in LP(0,T; V2) (asp > 1 and |[ix | £2 (@)
|1 Z&|lL» (@) are bounded).

Further, the equality (2.17) implies that (Z;,) is bounded in L?(0,T; V5). So by
the well known compact imbedding theorem (see [5]) there is a subsequence of ()
which is convergent in LP(Qr). Therefore, the corresponding subsequence of (z) is
convergent, too in LP(Qr).

Lemma 2.5. The operator S : LP(Qr) — LP(Qr) is continuous.

Proof. Assume that

(%) — # in LP(Qr). (2.22)
Now we show that for the solutions 4y, of (2.1), (2.2) with z = 2
(@ix) — @ in L*(Q7) (2.23)

and a.e. in Q7 for a subsequence where @ is the solution of (2.1), (2.2) with z = Z.
In the proof of (2.23) we use the (uniqueness) Theorem 4.1 of [11]. Since (Z)
is bounded in L?(0,T; Va), (i) is bounded in L?*(Qr) (see the proof of Lemma 2.4).
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Further, & and @y are weak solutions of (1.1) (i.e. of (2.1) with z = Z and z = Z,
respectively and satisfy the initial conditions (2.2), thus

a"(t) + Q(u(t)) + ()l (a(t)) + H(t, x; 1, 2)+ (2.24)
()i’ (t) = Fu(t, 23 %),
g (t) + Quk (1)) + () k(1)) + H(t, stk 2)+ (2.25)

Y(x)ay(t) = Fi(t,z; 2,) + H(t @y ak, 2) — H(t, 23, 2g).
Theorem 4.1 of [11] implies that for the solutions 4 of (2.24) and uy of (2.25) we have
for any s € [0,T] an estimation of the form
2

¢
lig(s) — ﬂ(s)”%z(m < const/ / [Fy(T, ;5 2;) — Fy(1, ;5 2)|d7| dtde+

const /
T

where the right hand side is converging to 0 as k — oo by (A4), (As).
So we have proved (2.23).
Now we show that (2.22), (2.23) imply:
(2x) = zin LP(Qr), i.e. (2;) — 2 in LP(Qr) (2.26)

for the solutions of (2.6), (2.7) and (2.8), (2.9), respectively (in the case of z, 2,
instead of @, Z we have @y, ;). Since

T
2

t
/[H(T>x;ﬁk72k)*H(T,.”ﬂ;ftk,é)]d’r dtdz

((2k—2) 20 — 2) + (A 5, (B) — A a(2), 2 — 2) =
(e™ " Fy(t, x5 iy) — e " Fy(t, x;@), 2 — 2),
integrating over (0,7") with respect to ¢, we find

%\IMT) — D)z — %HMO) — 2(0)[320)+ (2.27)
T
/0 (g2 () — Aaz(2), 2 — 2)dt =

T
/ (e~ Fy(t, a5 ) — e~ Fy(t, 5 ), 25 — 3t
0

where by (2.10)

— — / Dk — DA + |2 — 5P)dtda+
I+ HukHLZ(QT) + ||ZkHLp(QT) T
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By (2.22), (B1), (Bs), Vitali’s theorem and Hélder’s inequality
T

lim [ (Ag, 7 (2) — Aaz(2), 2 — 2)dt =0 (2.29)

k—oo Jo )
as || — 2|/ (@) is bounded. Similarly, the right hand side of (2.27) is coverging to
0 by (By). Therefore, (2.27) — (2.29) imply (2.26).
Lemma 2.6. There is a closed ball

Br(0) = {z € L”(Qr) : |2l r(@r) < B}

such that S(Br(0)) C Br(0).

Proof. According to (2.14) we have for the sequence (@,,) of Galerkin approximation
of the solution of (2.1), (2.2) (with z = 2)

1 ~ Cof ~ -
S Ol + Sl (O + 1 [ Wi (0)do < (2:30)

1

T t
5/0 ||F1(T,a:;2)||%2(9)d7'—|—const/0 ||12;,T(T)||2L2(Q)d7'+

/Ot [ Q h<am(7))dx:| dr + const

where the constants are not depending on m,t,z. Hence, by Gronwall’s lemma one
obtains

@l ()% + /Q h(tiy, (t))dz < const

t
const /
0

const

T
1+/ IRy 2) 2agdr |+ (231)
0

T
1 +/ ||F1(T,x;2)||%2(md7"etS] ds =
0

T
1+ /0 | F1(7, 25 5)@2(52)‘“1

where the constants are independent of m, ¢, 2. Thus by (2.30) and (As) we find

it (D13, < const

T
1+/0 |F1(T,x;2)||2L2(Q)dT] < const [1+||z||§;(O)T;V2)}

which implies (for the solution @ of (2.1), (2.2), the limit of (@,,))
1@)32(0, < const [1 + ||z||§;(QT)} . (2.32)

On the other hand, similarly to (2.19) — (2.21), by (Bs), (B4) we have for £(t) =
e~ %2(t) (where z is the solution of (2.3), (2.4))

t
— cons — / [|D2\p+ |2|P]dt <
1+ ||U||L2(QT) + ||Z||L,,(QT) T

T R T .
| as@) 2t~ [ (Aas(0), 0t <
0 0
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const + const|| F> (¢, @5 )| La (@) |2l Lr(@r) + const||k1 (@, 2)[| e 2l e (@r) <

const + const (1 + ||ﬁ||’};2(QT) + H5||Z£1p(QT)) 12llzr(@r) <
const + const (1 + ||Z||§lp’yé22T + |2 ilp(QT)) [2llr(@r) <
&1+ & (L4 IR P ) 12l oo
Thus for ||2||1r(q,) > €1/C2

~ ~ max 2
121ty < comst 1+ [l 7aq, + 121 T gm | [1+ IEITRAS 27 ] < (2.33)

L?(Qr)
b2 P max 2,
const {(1 + ||z||Lp(QT)) + HZ”FP(QT)} [1 + |z ”LP(Q{;/BI’Y)/ pﬁ} <
const[1 + HEH‘;F,(QT)]
where
6 = max{(818)/2, 71} + max{(817)/2,p1}. (2.34)

By (B4) § < p— 1, thus for sufﬁciently large R
€ Br(0) ={2€ L”(Qr), |ZlLr(@r) <R}

implies
2]l Lo (@ry < R, ie. z € Br(0).

(The norm of ||z||zr(@,) can be estimated by ||2]/1r(q,), multiplied by a constant.)
So the proof of Lemma 2.6 is completed.

Finally, Lemmas 2.4 - 2.6 and Schauder’s fixed point theorem imply that S has
a fixed point and, consequently, there exists a solution of (2.1) — (2.4).

3. Examples
Let the operator @ be defined by

(Qu,v) = / z a;i(z) (D) (D;v) + d(z)uv | de+
al
7,l=1

where aj;,d € L™®(Q), a;i = a;;, Z?,l:l aji(2)€;& > colé]?, d > co with some positive
constant ¢g. Then, clearly, assumption (A;) is satisfied.

If h is a O2 function such that h(n) = || if |n| > 1 then (Aj3)is satisfied.

The condition (A4) is satisfied e.g. if

H(t,x;u, 2) = x(t,2)g1(L12)g2(Lou) where x € L™(Qr),

Ly : LP(0,T; Vo) — L2(Qr), Lo: L*(Qr) — L*(Qr)

are continuous linear operators (with the Volterra property); g; is a globally Lipschitz
bounded function, g, is a globally Lipschitz function. In the particular case when

Ly is an L*(Q7) — L*(Qr) bounded linear operator (3.1)
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then go may be a locally Lipschitz function satisfying
|92 ()] < const|n|*+1/2 for |n| > 1.
The operator Lo has the property (3.1) e.g. if

(Lou)(t,x) = R'(t,a:;T, &u(r,&)drdE where
Qt

/ |K (t,2; 7, €)|?drdé < const for all (t,z) € Qr.
T

The operator Fy : Qr x LP(0,7T; V) — R may have the form
Fy(t,x;2) = f1(t, @, L32)
where f1(t,x, p) is measurable in (¢, z), continuous in u and
|f1(t, 2, )| < const|p|?/2 + fi(t, x) where
0< B <2, fLel?@Qr), Ls:LP(0,T;Va) = L*(Qr)
is a linear continuous operator. Then (Aj;) is fulfilled. In the particular case when
Ls is LP(0,T; Vo) — L™ (Qr)

linear and continuous then §; < 2 is not assumed.
Now we formulate examples for a; satisfying (B1) — (B3):

a;(t,z,&u,z) = a(t,x7L4u,L5z)§j\C|p_2, j=1,...,n where ¢ = (&,...&),

a(t, z,v1,vy) is measurable in (¢, ), continuous in vy, v, and satisfies

const
< a(t,z,v1,19) < const(l + |[v1|7 + o]
PP (t,z,v1,v2) (L4 [ ]” + |waf™)

with some positive constants, Ly, Ls : L*(Qr) — L>®(Qr) are continuous linear
operators,

aO(tvmaé';,L%Z) = aO(tvxa Lﬁua L7z)€0|£0|p72 + a1(2)3

where «ag(t, z,v1,v2) is measurable in (¢, ), continuous in vq, vo,

const
< t < t(1 Y D1
T il ol < ao(t,z,v1,v2) < const(l + |v1|7 + |1a]Pt)

with some positive constants, Lg, Ly : L*(Qr) — L*°(Qr) are continuous linear
operators and «; is a globally Lipschitz function. If the values of a, g are between
two positive constants then Ly — Ly may be L?*(Qr) — L*(Qr) continuous linear
operators.

Finally, the function Fy : Q7 x L?(Q7) — R may have the form

Fy(t, z;u) = f2(t, @, Lsu)
where fo(t, x, p) is measurable in (¢, z), continuous in u and
ot 2, )] < constlul” + folt, ),
0<v<1, fel*Qr)and Ls: L*(Qr) — L*(Qr)
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is a continuous linear operator. Then (Bj) is satisfied. In the particular case when
Lg is an L*(Q7) — L*°(Qr) bounded linear operator

then v <1 is not assumed.

4. Solutions in (0, c0)

Now we formulate an existence theorem with respect to solutions for ¢ € (0, 00).
Denote by L (0,00;V7) the set of functions u : (0,00) — Vi such that for each
fixed finite T > 0, their restrictions to (0,7 satisfy u|q )y € LP(0,T;V1) and let
Qoo = (0,00)xQ, LY (Qoo) the set of functions u : Qoo — R such that u|g, € L*(Qr)
for any finite T

Now we formulate assumptions on H, Fi, a;, Fs.

(A4) The function H : Qoo X L?, (Qoo) X LY. (Qoo) — R is such that for all fixed
u€ L} (Quo), 2 € LY (Qso) the function (t,x) — H(t,z;u,z) is measurable, H has
the Volterra property (see (A4)) and for each fixed finite T' > 0, the restriction Hr of
H to Q7 x L?(Q7) x LP(Qr) satisfies (Ay4).

Remark. Since H has the Volterra property, this restriction Hp is well defined by the
formula

HT(tvgj;ﬂag) :H(t,I;U7Z), (t,:l?) € QT u € LZ(QT)?’% ELP(QT)
where u € L? (Qw), z € LY (Qoo) may be any function satisfying u(t, z) = a(t, z),

loc
z2(t,x) = Z(t,x) for (t,z) € Q7.

(A5) Fi : Qoo X LY (Qss) — R has the Volterra property and for each fixed
finite T > 0, the restriction of Fy to (0,T) satisfies (As).

(B) aj : Qoo X R"™ x L2 (Qs) x LY (Qss) = R (j = 0,1,...,n) have the
Volterra property and for each finite T' > 0, their restrictions to (0,T) satisfy (By) —
(Bs).

(Bs) F2 : Qoo X L7, .(Q) — R has the Volterra property and for each fixed

finite T > 0, the restriction of F» to (0,T) satisfies (By).

Theorem 4.1. Assume (A1) — (As), (A4), (As), (B), (Bs) . Then for all ug € Vi,
uy € L*(Q) there exist

ue LS (0,00; V1), z€ LP (0,00;Va) such that

loc

u' € LS. (0,00; L*(Q)), u" € L},,(0,00; V), 2 € L} (0,00; V),
(2.1) — (2.4) hold for a.a. t € (0,00) and the initial condition (2.2) is fulfilled.
Assume that the following additional conditions are satisfied: there exist H®,
Fpo € L2(Q), us € Vi, a bounded function B3, belonging to L*(0,00; L?(Q)) such that
Quco) = FT° — H™, (4.1)

|H(t,w;u,2) = HY| < B(t,2),  |[Fi(ta;2) — F*(2)] < B(t, @) (4.2)
for all fized u € L?, (Qwo), 2z € LY (Qo0)). Further, there exist functions

loc loc

aX QxR X LX(Q) =R, j=1,....n F*:QxL*(Q)—>R



190 Lészlé Simon

such that for each fived zg € Va, z € L}, (Qoo) and u € L} (Qs), wo € Vi with the
property

Jim [[u(t) — wo 20y = 0

for the functions

;(t) = l|la;(t,z, Dzo, 20; u, 2) — a;-’o(x, Dzg, zo;wo) | Lagy, 7 =0,1,...,n, (43)

Y(t) = [[Fa(t, z3u) — F5° (z5w0) La (o) (4.4)
we have
Jim (1) =0, lim 4(t) = 0. (4.5)

Finally, (Bs) is satisfied such that the following inequalities hold for all t > 0 with
constants ca > 0, 8 > 0, not depending on t:

n

Z[aj (t,z, & u, Z) —a; (t, =, &5, Z)ng - f;] (4'6)

=0

C2

1§ =& P
L llullZa @00,

with some fized a > 0 (finite delay).
Then for the above solutions u,z we have

u € L™(0,00; V1), (4.7)
| ()] 2y < conste " (4.8)
where ¢ is given in (As) and there exists wo € Vi such that
w(T) = wo in L*(Q) as T — oo, |[u(T) — wol|r2(0) < conste™ " (4.9)
and wy satisfies
Q(wo) + ph (wo) = F° — H*. (4.10)
Finally, there exists a unique solution zg € Va of
Z/ a3°(z, Dzo, 205 wo) Djvdx —|—/ ay’ (z, Dz, zo; wo)vdx = (4.11)
=e Q

/ F3° (z;wo)vdx for all v € Vi
Q

(where wq is the solution of (4.10)) and
T+b
tin [10) = 2ol =0, fim [ a0 - sl =0 (@12)
for arbitrary fized b > 0. If

@;, ¥ € LY(0,00) then z € L¥(0, 00; Va). (4.13)
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Proof. Let (Tk)ren be a monotone increasing sequence, converging to +oo. According
to Theorem 2.1, there exist solutions uy, zj, of (2.1) — (2.4) for t € (0,T}). The Volterra
property of H, Fy, aj, F> implies that the restrictions of wu, z; to t € (0,7;) with
T, < Ty, satisfy (2.1) — (2.4) for ¢ € (0,T7).

Now consider the restrictions ug|(o,7,), 2kl0,1), ¥ = 2,3,.... Applying (2.33),
(2.34) and § <p—1to T =T and Z = 2;|(o,,) We obtain that the sequence

(Zk|(0,T1))keN is bounded in LP(Qr,) (4.14)

thus by Lemma 2.4 there is a subsequence (z1x)ren of (2;)ren such that the sequence
of restrictions (z1x|(o,7,))ren is convergent in LP(Qr, ).

Now consider the restrictions z1x|(o,7,) By using the above arguments, we find
that there exists a subsequence (zor)ren of (221)ren such that (zax|(0,7,))ken is con-
vergent in LP(Qr,).

Thus for all I € N we obtain a subsequence (zi;)ren Of (2k)ren such that
(zikl(0,1))en is convergent in LP(Qr,). Then the diagonal sequence (zxx)ren is a
subsequence of (zx)ren such that for all fixed I € N, (zrx|(0,1;))ren is convergent in
LP(Qq,) to some z* € LT (Qo). Since z; is a fixed point of S = S; : LP(Qr,) —
LP(Qr,) and Sj is continuous thus the limit 2*| 1,y in LP(Q1;) of (2xk|(0,1))ken is a
fixed point of S = 5.

Consequently, the solutions u} of (2.1), (2.2) when z is the restriction of z* to
(0,T;) and the restriction of z* to (0,7;) satisfy (2.1) — (2.4) for t € (0,7;). Since
for m < I, ufl,1,) = u, (by the Volterra property of H, Fi, a;, F), we obtain
u* € L} (Qx) such that for all fixed I, u*|o 1), 2*|(0,r,) satisfy (2.1) — (2.4) for
t € (0,T7), so the first part of Theorem 4.1 is proved.

Now assume that the additional conditions (4.1) - (4.6) are satisfied. Then we
obtain (4.7) — (4.10) for v = w*, z = z* by using the arguments of the proof of
Theorem 3.2 in [11]. For convenience we formulate the main steps of the proof.

The sequence (zk)|ken is bounded in LP(0,T;; Va) for each fixed [ by (2.19) —
(2.21), (By), (4.14)), consequently, from (2.13) (with Z; = zpx) we obtain for the
solutions wugg of (2.1), (2.2) with Z = 2z, (since ugy is the limit of the Galerkin
approximations )

e 1 + 5@l una(0) + [ plolhlun()dot  (115)
Q

/ot {/ﬂw(xﬂu;k(ﬂ%x] dT+/ot {/Q H (T, @; upk, 2k ) Uy, (T)da | dT =
/Ot { /Q Fi(r,z; zmu;k(r)dz] ar -+ 5 O + 5{Qunk(0)), e (0) +

[ #lahtuns (0))dz
Q
for all ¢ > 0. Hence we find by (4.1), (4.2) and Young’s inequality for wig = ugr — oo

1 c ¢
§||w§€k(t)||2Lz(Q) + §||ukk(t))||%,1 +c /Q h(ugg(t))dx —|—const/0 [/Q |w;6k|2da;] dr <

(4.16)



192 Lészlé Simon

t t
const {/ | Fy (T, 25 200) — F°||%dT —|—/ |H (T, 2; upkzk) — HOOH%dT} +
0 0

][ de] dr + G0t 0 + @unn(O). a0 + 2 [ nunn 0 <

Q

¢
5/ [/ w;kzdx] dr + const + C(e)[|8]172(0,00:11)-
o L/a

Choosing sufficiently small ¢ > 0, we obtain

t
/ [/ |w§€k|2dac] dr < const (4.17)
o Lo

t
o Ol @y & [ i) opr <

with some positive constants ¢ and ¢* not depending on k and t € (0, 00). Hence by
Gronwall’s lemma we obtain (4.8) and by (4.16) we find (4.7).
It is not difficult to show that

Ts
HU(T2)—U(T1)||HS/T [ () || it (4.18)

(see [11]), thus (4.8) implies (4.9) and by u € L*(0, 00; V1), the limit wy of u(t) as
t — oo must belong to V;.

In order to prove (4.10) we apply equation (1.1) to vxr, (t) with arbitrary fixed
v € Vi where limy_, o (T}) = 00 and

and thus by (4.16)

1
X () = Xt —To), x€C, suppx C [0,1]; / x(t)dt = 1.
0

Then by (4.8) one obtains (4.10) as k — oo.

Now we show that there exists a unique solution zy € V2 of (4.11). This statement
follows from the fact that the operator (applied to zg € V3) on the left hand side of
(4.11) is bounded, demicontinuous and uniformly monotone (see, e.g. [13]) by (B1),
(B2), (4.9), (4.5), (4.6).

Finally, we show (4.12). By (4.6) we have

1d
2dt

C2

|2(t) — 2013 +
L+ JlullL2(@\Qi—a)

[2(t) — 20lly, < (4.19)

n

/ Z[aj(t,x,Dz, zyu, z) — a;(t, x, D2y, z0;u, 2)|(Djz — Djzo)dz+
Q

j=1

/ [ao(t,z, Dz, z;u, 2) — ao(t, z, Dzg, 20; u, 2)|(z — z0)dx =
Q
/ [Fo(t, ;u) — FS°(z,wo)](z — z0)dx—
Q

/Q [a;(t,x, D2o, 20;u, 2) — a3 (x, D20, 20; wo)](Djz — Djzo)dx—
j=1



On a system of nonlinear partial functional differential equations 193

/ [ao(t,z, Dz, z0; u, 2) — ag°(t, 2, Dzg, z0; wo)](z — z0)dx <
Q

C(e)1Fa(t, w5 u) — F3° (2, wo) || La() + ll2(t) — 20l ey +

C(E) Z ”aj(taxa DZO; 205 U, Z) - a;?o(x’ DZO? 203 wO)H%q(Q) + E”Djz(t) - DjZOHII)JP(Q)—i_
j=1
C(e)|lao(t, z, D2y, zo; u, 2) — ago(x,Dzo,zo;wo)H%q(Q) +¢el|2(t) - zo||1£p(Q).

Since ”uH[zZ(Qt\QFa) is bounded for ¢ € (0,00) by (4.9) and

[I2(t) = z0llv, = comst|z(t) — zollL2(0)
with some positive constant, thus by (4.3) — (4.5), (4.19) with sufficiently small € > 0
we obtain for
y(t) = ll2(t) — 20l%

the inequality

y' (1) + 0] < g(1) (4.20)
where ¢* is a positive constant and lim., g = 0.

The inequality (4.20) implies the first part of (4.12):

limy =0 (4.21)

(see [10]). Integrating (4.19) with respect to ¢t over (T'—b, T +b) we obtain the second
part of (4.12) by (4.21). Integrating (4.19) with respect to t over (0,7, by (4.21) we
obtain (4.13) as T' — oc.
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