A dynamic electroviscoelastic problem with thermal effects
DOI:
https://doi.org/10.24193/subbmath.2021.4.13Keywords:
Piezoelectric, Frictional contact, Thermo-elasto-viscoplastic, Fixed point, Dynamic process, Coulombís friction law, evolution inequality.Abstract
We consider a mathematical model which describes the dynamic
process of contact between a piezoelectric body and an electrically conduc-tive foundation. We model the material's behavior with a nonlinear electro-viscoelastic constitutive law with thermal effects. Contact is described with the Signorini condition, a version of Coulomb's law of dry friction. A variational formulation of the model is derived, and the existence of a unique weak solution is proved. The proofs are based on the classical result of nonlinear first order evolution inequalities, the equations with monotone operators, and the fixed point arguments.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.