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Harmonic mappings and its directional convexity

Poonam Sharma and Omendra Mishra

Abstract. For any µj (µj ∈ C, |µj | = 1, j = 1, 2), we consider the rota-
tions fµ1 and Fµ2 of right half-plane harmonic mappings f, F ∈ SH which
are CHD with the prescribed dilatations ωf (z) = (a− z) / (1− az) for some
a (−1 < a < 1) and ωF (z) = eiθzn (n ∈ N, θ ∈ R), ωF (z) = (b− z) / (1− bz),
ωF (z) =

(
b− zeiφ

)
/
(
1− bzeiφ

)
(−1 < b < 1, φ ∈ R), respectively. It is proved

that the convolution fµ1 ∗Fµ2 ∈ SH and is convex in the direction of µ1µ2 under
certain conditions on the parameters involved.
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1. Introduction and preliminaries

Let H denotes the class of complex-valued functions f = u + iv which are har-
monic in the unit disk D = {z ∈ C : |z| < 1}, where u and v are real-valued harmonic
functions in D. A function f ∈ H can also be expressed as f = h+ ḡ, where h and g are
analytic in D, and are called the analytic and co-analytic parts of f , respectively. The
Jacobian of the function f = h+g is given by Jf (z) = |h′(z)|2−|g′(z)|2. According to
the Lewy’s [8], every harmonic function f = h+ g ∈ H is locally univalent and sense
preserving in D if and only if Jf (z) > 0 in D which is equivalent to the existence of an
analytic function ωf (z) = g′(z)/h′(z) in D such that |ωf (z)| < 1 for all z ∈ D. The
function ωf (z) is called the dilatation of the function f . The class of all univalent,
sense preserving harmonic functions f = h + g ∈ H, normalized by the conditions
h(0) = 0 = g(0) and h′(0) = 1 is denoted by SH. If the function f = h+ g ∈ SH, then
the functions h and g are of the form:

h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n (|b1| < 1) . (1.1)

The subclass of functions f = h + g ∈ SH satisfying condition g′(0) = 0 (or equiva-
lently ωf (0) = 0) is denoted by S0

H. Further, the subclasses of convex, close to convex
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functions f in SH
(
or S0

H
)

are denoted, respectively, by KH, CH
(
or K0

H, C
0
H
)
. The

convolution of two analytic functions

f(z) =

∞∑
n=1

anz
n and g(z) =

∞∑
n=1

bnz
n

is defined by

(f ∗ g)(z) =

∞∑
n=1

anbnz
n.

The convolution of two harmonic functions f = h+ g and F = H +G is defined by

(f ∗ F )(z) = g ∗G+ (h ∗H).

A domain Ω ⊂ C is said to be convex in the direction eiγ (γ ∈ R), if for every t ∈ C,
the set Ω ∩ {t + reiγ : r ∈ R} is either connected or empty. In particular, a domain
is convex in the horizontal direction CHD if every line parallel to the real axis has a
connected or empty intersection with Ω. Clunie and Sheil-Small [2] introduced shear
construction method which provides a univalent harmonic function from a related
analytic function and this fundamental theorem is the following:

Theorem 1.1. [2]A locally univalent harmonic function f = h + g is a univalent
mapping of D onto a domain convex in the direction of eiγ if and only if h− e2iγg is
a analytic univalent mapping of D onto a domain convex in the direction of eiγ .

We may construct a harmonic function f = h+g ∈ SH, where h and g are of the
form (1.1) by the shearing of a normalized analytic function (h− g) / (1− b1) which
is univalent. Throughout the paper we take b1 = −a (−1 < a < 1).

Definition 1.2 (Slanted and right half-planes). The region Ha
µ for some µ (µ ∈ C,

|µ| = 1) and for some a (−1 < a < 1) defined by

Ha
µ :=

{
w ∈ C : <(µw) > −1 + a

2

}
(1.2)

is called a slanted half-plane and the region Ha
1 =: Ha (−1 < a < 1) is the right

half-plane. When µ = eiγ for γ ∈ [0, 2π), we denote the region Ha
µ by Haγ .

The class S(Ha
µ) consists of functions f ∈ SH which map D onto a slanted half-

plane Ha
µ and in particular, S(Ha) denotes a class of functions f ∈ SH which are the

right half-plane mappings. If µ = eiγ for γ ∈ [0, 2π) , then the class S(Ha
µ) is denoted

by S(Haγ). Also, if a = 0, then the class S(Haγ) is denoted by S0(Hγ) (see Dorff et
al. [4].)

Definition 1.3 (Rotation by µ). The rotations of the function f by µ (µ ∈ C, |µ| = 1),
denoted by fµ is given by

fµ(z) = µf(µz).

The convolution of two analytic convex mappings is convex. However the con-
volution of two convex harmonic functions need not be convex under convolution.
Therefore, it is interesting to study convolution properties of harmonic functions.
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Convolution of harmonic functions convex in the given direction has also been stud-
ied in [1, 3, 4, 5, 6, 7, 9, 10, 12, 13] . In this work rotations of right half-plane
harmonic mappings which are CHD are defined and the convolution of these rota-
tions are studied unlike the earlier studies [4, 10, 11, 13], where the convolution of
slanted half-plane harmonic mappings which are convex in certain directions are stud-
ied. Indeed, we study the convolution fµ1

∗ Fµ2
, where for complex number µj with

|µj | = 1, j = 1, 2, fµ1
and Fµ2

are the rotations of right half-plane harmonic mappings
f, F ∈ SH which are CHD with dilations ωf (z) = (a− z) / (1− az), (−1 < a < 1),
ωF (z) = eiθzn, (n ∈ N, θ ∈ R), ωF (z) = (b− z) / (1− bz), (−1 < b < 1) and
ωF (z) =

(
b− zeiφ

)
/
(
1− bzeiφ

)
, (−1 < b < 1, φ ∈ R), respectively. It is proved that

the convolution fµ1 ∗ Fµ2 ∈ SH and is convex in the direction of µ1µ2 under certain
conditions on the parameters involved.

2. Preliminaries

We need following lemmas in proving our results.

Lemma 2.1. [14]Let the function f : D→ C be an analytic function with f(0) = 0 and
f ′(0) 6= 0. Suppose that

ϕ(z) =
z

(1 + zeiθ) (1 + ze−iθ)
(θ ∈ R; z ∈ D) . (2.1)

If the function f satisfy

<
(
zf ′(z)

ϕ(z)

)
> 0 (z ∈ D) , (2.2)

then the function f is convex in the direction of real axis.

Lemma 2.2. (Cohn’s rule [15, p. 375]) For a polynomial p given by

p(z) = p0(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 (an 6= 0)

of degree n, let p∗ be an associated polynomial given by

p∗(z) = p∗0(z) = znp

(
1

z

)
= an + an−1z + · · ·+ a1z

n−1 + a0z
n.

Denote by r and s the number of zeroes of the polynomial inside the unit circle and
on it, respectively. If |a0| < |an|, then the polynomial p1 is given by

p1(z) =
anp(z)− a0p∗(z)

z
is of degree n − 1 with r1 = r − 1 and s1 = s the number of zeroes of p1 inside the
unit circle and on it, respectively.

We first mention the following result which can be proved by using the definition
of rotation and [2, Theorem 1.1].

Lemma 2.3. If the function f = h+ g ∈ SH is CHD, then for any µ (µ ∈ C, |µ| = 1),
fµ = H +G ∈ SH is convex in the direction of µ, where

H(z) = µh(µz) and G(z) = µg(µz). (2.3)
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Lemma 2.4. Let the function f = h + g ∈ S(Ha). Then for any µ (µ ∈ C, |µ| = 1),
fµ = H +G ∈ S(Ha

µ), where H and G are given by (2.3) and hence

H(z) + µ2G(z) =
(1 + a)z

1− µz
(z ∈ D) . (2.4)

In particular,

h(z) + g(z) =
(1 + a)z

1− z
(z ∈ D) . (2.5)

The proof of Lemma 2.4 is similar to the proof of [4, Theorem 1.1]

Lemma 2.5. Let for each j = 1, 2,let the function fj = hj + gj ∈ S(Haj ) be CHD
maps and the function f = f1 ∗ f2 ∈ SH. Then for any µj (µj ∈ C, |µj | = 1, j = 1, 2),
fµj
∈ S(H

aj
µj ) is convex in the direction of µj and fµ1

∗ fµ2
= fµ1µ2

∈ SH is convex
in the direction of µ1µ2 in D.

Proof. Let, for each j = 1, 2, the function fj = hj + gj ∈ S(Haj ) be CHD maps.
Then, by Theorem 1.1, Fj := hj − gj is CHD and, from (2.5) of Lemma 2.4

hj(z) + gj(z) =
(1 + aj) z

1− z
(z ∈ D) . (2.6)

Then for any µj (µj ∈ C, |µj | = 1, j = 1, 2), fµj = Hj + Gj ∈ S(H
aj
µj ) and is convex

in the direction of µj by Lemma 2.3, where, in view of (2.3),

Hj(z) = µjhj(µjz) and Gj(z) = µjgj(µjz).

Since the function f = f1 ∗ f2 = h+ g we have

fµ1
∗ fµ2

= H1 ∗H2 +G1 ∗G2

= µ1µ2 (h1 ∗ h2) (µ1µ2z) + µ1µ2 (g1 ∗ g2) (µ1µ2z)

= µ1µ2h (µ1µ2z) + µ1µ2 g (µ1µ2z)

= fµ1µ2
:= H +G.

Since f = f1 ∗ f2 ∈ SH, by Lemma 2.3, fµ1
∗ fµ2

= fµ1µ2
∈ SH. We now show that

fµ1µ2
is convex in the direction of µ1µ2. In view of Lemma 2.3, it is enough to prove

that f = h + g is CHD or by Theorem 1.1, h − g is CHD. Since h = h1 ∗ h2 and
g = g1 ∗ g2, we have

F1 = (h1 − g1) ∗ (h2 + g2)

= h1 ∗ h2 + h1 ∗ g2 − g1 ∗ h2 − g1 ∗ g2 (2.7)

and

F2 = (h2 − g2) ∗ (h1 + g1)

= h1 ∗ h2 + g1 ∗ h2 − h1 ∗ g2 − g1 ∗ g2, (2.8)

where from (2.6),

F1 = (h1(z)− g1(z)) ∗ (1 + a2)z

1− z
= (1 + a2) (h1(z)− g1(z)) (2.9)



Harmonic mappings and its directional convexity 681

and

F2 = (h2(z)− g2(z)) ∗ (1 + a1)z

1− z
= (1 + a1) (h2(z)− g2(z)) . (2.10)

Then from (2.7) and (2.8),

1

2
(F1 + F2) = h1 ∗ h2 − g1 ∗ g2.

Hence, we only need to prove that F1 + F2 is CHD. We have from (2.9) and (2.10)

F1 + F2 = (1 + a2) (h1(z)− g1(z)) + (1 + a1) (h2(z)− g2(z))

and

z (F1 + F2)
′
(z) = (1 + a2)z (h′1(z) + g′1(z)) p1(z) + (1 + a1)z (h′2(z) + g′2(z)) p2(z)

(2.11)
where for each j = 1, 2,

pi(z) =
h′i(z)− g′i(z)
h′i(z) + g′i(z)

Since fi ∈ SH , the dilatation ωfi = gi/fi satisfy |ωfi | < 1 and hence

< (pi(z)) = <
(

1− ωfi(z)
1 + ωfi(z)

)
> 0.

Hence, on using the derivative of (2.6), in (2.11) we have

z (F1 + F2)
′
(z) = (1 + a2)(1 + a1)

z

(1− z)2
[p1(z) + p2(z)]

and with ϕ(z) = z
(1−z)2 , we have

<
(
z (F1 + F2)

′
(z)

ϕ(z)

)
= (1 + a2)(1 + a1)< (p1(z) + p2(z)) > 0 (z ∈ D) .

By Lemma 2.1 it follows that F1 +F2 is CHD and hence, its harmonic shear f is CHD
and by Lemma 2.3, fµ1µ2

is convex in the direction of µ1µ2 in D. This completes the
proof. �

A equivalent form of Lemma 2.5 is as follows:

Lemma 2.6. Let for each j = 1, 2, fj = hj + gj ∈ S(Haj ) be CHD and let fγj be the

rotations of fj by eiγj . Then fγj ∈ S(Hajγj ) is convex in the direction of e−iγj and
fγ1 ∗ fγ2 ∈ SH and is convex in the direction of − (γ1 + γ2) if f1 ∗ f2 ∈ SH.

Our next lemma gives a formula for the dilatation of the convolution if two
slanted right-half plane mapping.

Lemma 2.7. Let the function f = h+ g ∈ S(Ha) with the dilatation

ωf (z) = (a− z)/(1− az) (−1 < a < 1)

and let the function F = H + G ∈ S(Hb) with a dilatation ωF . Then the dilatation
ω̃(z) of the convolution f ∗ F is given by

ω̃(z) =
2 (a− z)ωF (z) (1 + ωF (z))− (1− a) z (1− z)ω′F (z)

2 (1− az) (1 + ωF (z))− (1− a) z (1− z)ω′F (z)
. (2.12)
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Proof. Since f = h + g ∈ S(Ha) and the dilatation ωf (z) = (a − z)/(1 − az), we
obtain from (2.5) that

h′(z) =
1− az

(1− z)3
and g′(z) =

a− z
(1− z)3

.

which gives

h(z) =
1 + a

2

[
z

1− z
+

(1− a) z

(1 + a) (1− z)2

]
(2.13)

and

g(z) =
1 + a

2

[
z

1− z
− (1− a) z

(1 + a) (1− z)2

]
. (2.14)

Using (2.13) and (2.14) the dilatation ω̃(z) of f∗ F is given by

ω̃(z) =
(g ∗G)

′
(z)

(h ∗H)
′
(z)

=
2aG′(z)− (1− a) zG′′(z)

2H ′(z) + (1− a) zH ′′(z)
. (2.15)

Since G′(z) = ωF (z)H ′(z), we have G′′(z) = ω′F (z)H ′(z) + ωF (z)H ′′(z) and, from
(2.5),

H(z) +G(z) =
(1 + b)z

1− z
(z ∈ D) (2.16)

which in turn gives

H ′(z) =
1 + b

(1 + ωF (z)) (1− z)2
(2.17)

and

H ′′(z) =
(1 + b) [2 (1 + ωF (z))− (1− z)ω′F (z)]

(1 + ωF (z))
2

(1− z)3
. (2.18)

Hence, from (2.15), we obtain

ω̃(z) =
{2aωF (z)− (1− a) zω′F (z)}H ′(z)− (1− a) zωF (z)H ′′(z)

2H ′(z) + (1− a) zH ′′(z)

On using (2.17) and (2.18), the desired expression for ω̃(z) follows. �

A particular form of Lemma 2.7 is as follows:

Corollary 2.8. Let the function f = h + g ∈ S(H0) with the dilatation ωf (z) = −z
and let the function F = H+G ∈ S(Hb) with a dilatation ωF (z). Then the dilatation
ω̃(z) of the convolution f∗ F is given by

ω̃(z) =
−2zωF (z) (1 + ωF (z))− z (1− z)ω′F (z)

2 (1 + ωF (z))− z (1− z)ω′F (z)
. (2.19)
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3. Main results

We now prove our first main result on convolution fµ1
∗Fµ2

, where the function
f = h + g ∈ S(Ha) with the dilatation ωf (z) = (a − z)/(1 − az) (−1 < a < 1) and

F = H+G ∈ S(H0) with the dilatation ωF = eiθzn (n ∈ N, θ ∈ R) which is as below:

Theorem 3.1. Let the function f = h+ g ∈ S(Ha) and the function

F = H +G ∈ S(H0)

be CHD maps with the dilatations

ωf (z) = (a− z)/(1− az) (−1 < a < 1) and ωF (z) = eiθzn (n ∈ N, θ ∈ R) ,

respectively, then for any µj (µj ∈ C, |µj | = 1, j = 1, 2), the function fµ1
∗ Fµ2

∈ SH
is convex in the direction of µ1µ2 for a ∈ [(n− 2) / (n+ 2) , 1).

Proof. In view of Lemma 2.5, it is enough to show that f∗ F ∈ SH. Let ω̃(z) be the
dilatation of the convolution f ∗ F . Since ωF (z) = eiθzn (n ∈ N, θ ∈ R) in (2.12) of
Lemma 2.7, gives

ω̃(z) =
2 (a− z) eiθzn

(
1 + eiθzn

)
− (1− a) z (1− z)neiθzn−1

2 (1− az) (1 + eiθzn)− (1− a) z (1− z)neiθzn−1
= −zne2iθ p(z)

p∗(z)
,

where

p(z) = p0(z) = zn+1 − azn +
1

2
(2 + an− n) e−iθz +

1

2
(n− 2a− an) e−iθ (3.1)

and

p∗(z) = zn+1p

(
1

z

)
.

Let A1, A2, A3, · · · , An+1 be the zeros ( not necessarily distinct) of the polynomial p,
so that 1/A1, 1/A2, 1/A3, . . . , 1/An+1 are the zeros of the polynomial p∗, Then, it
follows that

ω̃(z) = −zne2iθ (z −A1)(z −A2) · · · (z −An+1)

(1−A1z)(1−A2z) · · · (1−An+1z)
.

Now, we only need to prove that |ω̃(z)| < 1. If a = (n− 2)/(n+ 2), then

p(z) = e−iθ
[
zn+1eiθ − n− 2

n+ 2
zneiθ − n− 2

n+ 2
z + 1

]
and

p∗(z) = zn+1eiθ − n− 2

n+ 2
zneiθ − n− 2

n+ 2
z + 1

which proves that

|ω̃(z)| =
∣∣−zneiθ∣∣ < 1. (3.2)

Let (n − 2)/(n + 2) < a < 1. We first show that each zero Ai of p lies inside and on
the unit circle: |Ai| ≤ 1 for each i = 1, 2, . . . , n+ 1. We apply the Cohn’s rule to the
polynomial p of degree n+ 1 given by (3.1). Since

|a0| :=
∣∣∣∣12 (n− 2a− an) e−iθ

∣∣∣∣ < 1 =: |an+1|
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and
(1− a) (2 + n) [2 (1 + a)− (1− a)n]

4
> 0,

we see that

p1(z) =
an+1p(z)− a0p∗(z)

z

=
(1− a) (2 + n) [2 (1 + a)− (1− a)n]

4
q1(z),

and hence, p1(z) has same same zeros as the polynomial

q1(z) = zn − n

n+ 2
zn−1 +

2

n+ 2
e−iθ (3.3)

has. If n = 1, q1(z) has a zero at

z =
1

3
− 2

3
e−iθ

which lies inside or on the unit circle |z| = 1. Hence, p1(z) has a zero inside or on the
unit circle |z| = 1 if − 1

3 < a < 1. If n ≥ 2 and if we write Eq. (3.3) as

q1(z) = q2(z) + q3(z), (3.4)

where q2(z) = zn and

q3(z) = − n

n+ 2
zn−1 +

2

n+ 2
e−iθ,

then on |z| = 1 + ε (ε > 0) ,

|q2(z)| = (1 + ε)
n

and

|q3(z)| ≤ n

n+ 2
(1 + ε)

n−1
+

2

n+ 2
.

Therefore, we have

|q3(z)| < |q2(z)|
on |z| = 1 + ε if

n

n+ 2
(1 + ε)

n−1
+

2

n+ 2
< (1 + ε)

n
.

Since (1 + ε)
n−1

> 1,

n

n+ 2
(1 + ε)

n−1
+

2

n+ 2
<
n+ 2

n+ 2
(1 + ε)

n−1
= (1 + ε)

n−1
< (1 + ε)

n
,

we have

|q3(z)| < |q2(z)| on |z| = 1 + ε

and hence, by well known Rouche’s Theorem the polynomials q2 and q2 + q3 = q1
have same number of zeros inside the disk |z| < 1 + ε. As the polynomial q2 has n
zeros inside the disk |z| < 1 + ε, the polynomial q1 has n zeroes in that disk. Letting
ε → 0, we obtain that the polynomial q1 has all of its n zeros in the disk |z| ≤ 1. It
proves consequently that all the zeros Ai of p(z) lie inside or on the unit circle |z| = 1.
This proves the result. �
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Our second main result on convolution fµ1
∗Fµ2

of rotation of f = h+g ∈ S(Ha) with

the dilatation ωf (z) = (a− z)/(1− az) (−1 < a < 1) and the function F = H +G ∈
S(Hb) with the dilatation ωF (z) = (b− z)/(1− bz) (−1 < b < 1) is as below:

Theorem 3.2. Let the function f = h+ g ∈ S(Ha) and the function

F = H +G ∈ S(Hb)

be CHD maps with the dilatation

ωf (z) = (a− z)/(1− az) (−1 < a < 1)

and

ωF (z) = (b− z)/(1− bz) (−1 < b < 1) ,

respectively, then for any µj (µj ∈ C, |µj | = 1, j = 1, 2), fµ1
∗ Fµ2

∈ SH is convex in
the direction of µ1µ2 provided (a+ b)/(1 + ab) ∈ [−1/3, 1).

Proof. To prove the result, in view of Lemma 2.5, we prove that f ∗ F ∈ SH. Let
ω̃(z) be the dilatation of f ∗ F when ωF (z) = (b− z)/(1− bz) (−1 < b < 1). Then
from Lemma 2.7 we have

ω̃(z) =
2 (a− z) b−z

1−bz

(
1 + b−z

1−bz

)
− (1− a) z (1− z) b2−1

(1−bz)2

2 (1− az)
(

1 + b−z
1−bz

)
− (1− a) z (1− z) b2−1

(1−bz)2
=

r(z)

r∗(z)
, (3.5)

where

r(z) = z2 +
1

2
(ab− 3a− 3b+ 1) z + ab (3.6)

and

r∗(z) = z2r

(
1

z

)
.

Hence, if A and B are the zeros of r(z), then 1/A and 1/B are the zeros of r∗(z) and
we write

ω̃(z) =
(z −A)(z −B)

(1−Az)(1−Bz)
.

Now we prove that |ω̃(z)| < 1 or equivalently that A and B lie inside or on the unit
circle |z| = 1. For this we apply the Cohn’s rule to the polynomial r. Since |ab| < 1
we see that

r1(z) =
r(z)− abr∗(z)

z
= (1− ab)

[
(1 + ab) z +

1

2
(ab− 3a− 3b+ 1)

]
has a zero at

z0 =
3

2

(
a+ b

1 + ab

)
− 1

2
.

The zero z0 lies inside or on the unit circle |z| = 1 if (a+ b)/(1 +ab) ∈ [−1/3, 1). This
proves the result. �

Taking b = a in Theorem 3.2, we get following result:
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Corollary 3.3. Let fj ∈ S(Ha) be CHD with the dilatation ωfj (z) = (a− z)/(1− az)
for each j = 1, 2. Then for any µj (µj ∈ C, |µj | = 1, j = 1, 2), fµ1

∗fµ2
∈ SH is convex

in the direction of µ1µ2 for a ∈ [−3 + 2
√

2, 1).

The next result gives a condition for the directional convexity of the convolution
fµ1
∗Fµ2

when f = h+g ∈ S(H0) with the dilatation ωf = −z and F = H+G ∈ S(Hb)
with the dilatation ωF =

(
b− zeiφ

)
/
(
1− bzeiφ

)
(−1 < b < 1, φ ∈ R) .

Theorem 3.4. Let the function f = h+ g ∈ S(H0) and the function

F = H +G ∈ S(Hb)

be CHD maps with the dilatations

ωf (z) = −z and ωF (z) = (b− zeiφ)/(1− bzeiφ) (−1 < b < 1, φ ∈ R),

respectively. Then for any µj (µj ∈ C, |µj | = 1, j = 1, 2), fµ1
∗Fµ2

∈ SH is convex in
the direction of µ1µ2 if any one of the following case holds:

(i) cosφ = 1 and −1/3 ≤ b < 1
(ii) −1 ≤ cosφ < 1 and b2 < 1/(5 + 4 cos θ).

Proof. From (2.19), it follows that the dilatation ω̃ of f ∗ F is given by

ω̃(z) =
−2zωF (1 + ωF )− z (1− z)ω′F

2 (1 + ωF )− z (1− z)ω′F
,

where ωF (z) = (b−zeiφ)/(1−bzeiφ) and ω′F (z) = (b2−1)eiφ/(1−beiφz)2 (−1 < b < 1,
φ ∈ R). Hence, we have

ω̃(z) = −ze2iφ t(z)
t∗(z)

,

where

t(z) = z2 − 1 + 3b

2
e−iφz +

[2b− (1− b)eiφ]e−2iφ

2

and

t∗(z) = 1− 1 + 3b

2
eiφz +

[2b− (1− b)e−iφ]e2iφ

2
.

We need only to show that |ω̃(z)| < 1. (i) If cosφ = 1, then

t(z) = z2 − 1 + 3b

2
z +

3b− 1

2
= (z − 1)

(
z − 3b− 1

2

)
and

t∗(z) = (1− z)
(

1− 3b− 1

2
z

)
.

Hence, the dilatation ω̃ of f ∗ F becomes

ω̃(z) = −z (z − 1)

(1− z)
(z − 3b−1

2 )

(1− 3b−1
2 z)
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which imply that |ω̃(z)| < 1 when |(3b− 1)/2| ≤ 1 or when −1/3 ≤ b < 1. This proves
the result if case (i) holds.
(ii)If −1 ≤ cosφ < 1, choose

a0 =
[2b− (1− b)eiφ]e−2iφ

2
and a1 = − (1 + 3b)e−iφ

2
.

Then t(z) = z2 + a1z + a0 and in this case, we have

1− |a0|2 = 1− [2b− (1− b)eiφ][2b− (1− b)e−iφ]

4

=
1− b

4
[b(5 + 4 cosφ) + 3] > 0

when b > −3/(5 + 4 cosφ). Under the condition when b > −3/(5 + 4 cosφ), we apply
Cohn’s rule to the polynomial t(z). Consider

t1(z) =
t(z)− a0t∗(z)

z
=

1− b
4

[b(5 + 4 cosφ) + 3](z − z0),

where

z0 =
(1 + 3b)(1 + 2e−iφ)

3 + b(5 + 4 cosφ)
=:

u(b)

v(b)
.

We have

|v(b)|2 − |u(b)|2 = 4(1− cosφ)[1− b2(5 + 4 cosφ)] > 0

when

b2 <
1

5 + 4 cosφ
or − 1√

5 + 4 cosφ
< b <

1√
5 + 4 cosφ

.

Since

b2 <
1

5 + 4 cosφ
⇒ b > − 3

5 + 4 cosφ

when −1 ≤ cosφ < 1, the result is proved if case (ii) holds. �

For b = 0, Theorem 3.4, reduces to the following simpler form:

Corollary 3.5. Let f, F ∈ S(H0) with the dilatations

ωf (z) = −z and ωF (z) = −zeiφ (φ ∈ R),

respectively. Then for any µj (µj ∈ C, |µj | = 1, j = 1, 2), fµ1 ∗Fµ2 ∈ SH is convex in
the direction of µ1µ2.

Further, for φ = π + θ Theorem 3.4 takes the following form:

Corollary 3.6. Let the function f = h+ g ∈ S(H0) with the dilation ωf (z) = −z and

let the function F = H +G ∈ S(Hb) with the dilatation

ωF (z) = (b+ zeiθ)/(1 + bzeiθ) (−1 < b < 1, θ ∈ R).

Then for any µj (µj ∈ C, |µj | = 1, j = 1, 2), fµ1
∗Fµ2

∈ SH is convex in the direction
of µ1µ2 if any one of the following case holds:

(i) cos θ = −1 and −1/3 ≤ b < 1
(ii) −1 < cos θ ≤ 1 and b2 < 1/(5− 4 cos θ).
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4. Examples

In this section, we give following examples to illustrate our main results. Exam-
ples 1 and 2 are based on Theorem 3.1, Example 3 is on Theorem 3.2 and Example
4 is on Theorem 3.4.

Example 4.1. Let for some µ1, µ2 ∈ C and for some a (−1 < a < 1),

fµ1
(z) = h(z) + g(z) ∈ S(Ha),

where

h(z) =
2z − (1 + a)µ1z

2

2 (1− µ1z)
2 and g(z) =

2az − (1 + a)µ1z
2

2 (1− µ1z)
2

and Fµ2
(z) = H(z) +G(z) ∈ S(H0), where

H(z) =
2z − µ2z

2

2 (1− µ2z)
2 and G(z) =

−µ2z
2

2 (1− µ2z)
2 .

Then fµ1∗ Fµ2 ∈ SH if a ∈ [−1/3, 1) and is convex in the direction of µ1µ2.

Example 4.2. Let for some µ1, µ2 ∈ C and for some a (−1 < a < 1),

fµ1
(z) = h(z) + g(z) ∈ S(Ha),

where

h(z) =
2z − (1 + a)µ1z

2

2 (1− µ1z)
2 and g(z) =

2az − (1 + a)µ1z
2

2 (1− µ1z)
2

and Fµ2
(z) = H(z) +G(z) ∈ S(H0), where

H(z) =
µ2

8
log

1 + µ2z

1− µ2z
+

3z − 2µ2z
2

4 (1− µ2z)
2 and G(z) = −µ2

8
log

1 + µ2z

1− µ2z
+

z − 2µ2z
2

4 (1− µ2z)
2 .

Then fµ1∗ Fµ2 ∈ SH if a ∈ [0, 1) and is convex in the direction of µ1µ2.

Example 4.3. Let for some µ1, µ2 ∈ C and for some a (−1 < a < 1),

fµ1
(z) = h(z) + g(z) ∈ S(Ha),

where

h(z) =
2z − (1 + a)µ1z

2

2 (1− µ1z)
2 and g(z) =

2az − (1 + a)µ1z
2

2 (1− µ1z)
2

and Fµ2
(z) = H(z) +G(z) ∈ S(H1/2), where

H(z) =
4z − 3µ2z

2

4 (1− µ2z)
2 and G(z) =

2z − 3µ2z
2

4 (1− µ2z)
2 .

Then fµ1∗ Fµ2 ∈ SH if a ∈ [−5/7, 1) and is convex in the direction of µ1µ2.

Example 4.4. Let for some µ1, µ2 ∈ C and for some b (−1 < b < 1),

fµ1
(z) = h(z) + g(z) ∈ S(H0),

where

h(z) =
2z − µ1z

2

2 (1− µ1z)
2 and g(z) =

−µ1z
2

2 (1− µ1z)
2 .
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and Fµ2
(z) = H(z) +G(z) ∈ S(Hb), where

H(z) =
1− b

4
µ2 log

1 + µ2z

1− µ2z
+

1 + b

2

z

1− µ2z

and

G(z) = −1− b
4

µ2 log
1 + µ2z

1− µ2z
+

1 + b

2

z

1− µ2z
.

Then fµ1
∗ Fµ2

∈ SH and is convex in the direction of µ1µ2.
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