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Positivity of sums and integrals for n-convex
functions via the Fink identity and new Green
functions

Asif R. Khan and Josip Pečarić

Abstract. We consider positivity of sum
∑n

i=1 pif(xi) involving convex functions

of higher order. Analogous for integral
∫ b

a
p(x)f(g(x))dx is also given. Represen-

tation of a function f via the Fink identity and the Green function leads us to
identities for which we obtain conditions for positivity of the mentioned sum and
integral. We obtain bounds for integral remainders which occur in those identities
as well as corresponding mean value theorems.
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1. Introduction

In [9] we proved various results related to general linear inequalities via Fink
identity with and without Green function (see also [8]). Recently, in [2] the authors
have introduced new Green type functions. Our main objective of present article is
to further extend results of [9] using new definitions stated in [2].

To recall the definitions of generalized convex function and related concepts and
results we refer to interested readers the following references [10], [5] and [15].

In the sequel we use the notation AC[a, b] for class of absolutely continuous
functions defined on a real interval [a, b] and by (ξ − s)k+, k ∈ N0, we will mean the
following

(ξ − s)k+ =

{
(ξ − s)k, if ξ ≥ s
0, if ξ < s.

Now we recall the Fink identity to prove many interesting results. The following
theorem is proved by A. M. Fink in [4].
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Proposition 1.1. Let a, b ∈ R, f : [a, b]→ R, n ≥ 1 and f (n−1) is absolutely continuous
on [a, b]. Then

f (x) =
n

b− a

∫ b

a

f (t) dt−
n−1∑
k=1

n− k
k!

(
f (k−1) (a) (x− a)

k − f (k−1) (b) (x− b)k

b− a

)

+
1

(n− 3)! (b− a)

∫ b

a

(x− t)n−1 P [a,b] (t, x) f (n) (t) dt, (1.1)

where

P [a,b] (t, x) =

{
t− a, a ≤ t ≤ x ≤ b,
t− b, a ≤ x < t ≤ b. (1.2)

Pečarić in [12] proved the following result (see also [15, p.262]):

Proposition 1.2. The inequality
m∑
i=1

pif(xi) ≥ 0 (1.3)

holds for all convex functions f if and only if the m−tuples

x = (x1, . . . , xm), p = (p1, . . . , pm) ∈ Rm

satisfy
m∑
i=1

pi = 0 and

m∑
i=1

pi|xi − xk| ≥ 0 for k ∈ {1, . . . ,m}. (1.4)

Since
m∑
i=1

pi|xi − xk| = 2

m∑
i=1

pi(xi − xk)+ −
m∑
i=1

pi(xi − xk),

where y+ = max(y, 0), it is easy to see that condition (1.4) is equivalent to

m∑
i=1

pi = 0,

m∑
i=1

pixi = 0 and

m∑
i=1

pi(xi−xk)+ ≥ 0 for k ∈ {1, . . . ,m−1}. (1.5)

The following result is due to Popoviciu [16, 17] (see [15, 18] also).

Proposition 1.3. Let n ≥ 2. Inequality (1.3) holds for all n-convex functions f :
[a, b]→ R if and only if the m−tuples x ∈ [a, b]m, p ∈ Rm satisfy

m∑
i=1

pix
k
i = 0, for all k ∈ {0, 1, . . . , n− 1} (1.6)

m∑
i=1

pi(xi − t)n−1+ ≥ 0, for every t ∈ [a, b]. (1.7)

Proposition 1.4. Let n ≥ 2, p : [α, β]→ R and g : [α, β]→ [a, b]. Then, the inequality∫ β

α

p(x)f(g(x)) dx ≥ 0 (1.8)
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holds for all n-convex functions f : [a, b]→ R if and only if∫ β

α

p(x)g(x)k dx = 0, for all k ∈ {0, 1, . . . , n− 1}∫ β

α

p(x) (g(x)− t)n−1+ dx ≥ 0, for every t ∈ [a, b].

(1.9)

After this introductory section, we continue with section 2 where identities for
n∑
i=1

pif(xi) and

∫ b

a

p(x)f(g(x))dx

are given using the Fink identity and new Green functions. Also we consider inequal-
ities for n-convex functions which are based on these identities. Section 3 is devoted
to estimations of functions Ak by using Čebyšev, Gr̈uss and Ostrowski type inequal-
ities and the Hölder inequality. In the last section we give mean value theorems for
functionals Ak, k ∈ {1, 2}.

2. Popoviciu type identities and inequalities via the Fink identity and
new Green functions

In this section we obtain some discrete and integral identities and the correspond-
ing linear inequalities using new Green functions and applying the Fink identity. As a
special choice of Abel-Gontscharoff polynomial for ‘two-point right focal’ interpolating
polynomial for n = 2 could be stated as (see [13]):

f(ξ) = f(a) + (ξ − a)f ′(b) +

b∫
a

G1(ξ, t)f ′′(t)dt, (2.1)

where G1(s, t) is Green’s function for ‘two-point right focal problem’ defined as

G1(s, t) =

{
a− t, a ≤ t ≤ s,
a− s, s ≤ t ≤ b. (2.2)

Motivated by Abel-Gontscharoff identity (2.1) and related Green’s function (2.2), we
recall some new types of Green functions Gl : [a, b]× [a, b]→ R, (l = 2, 3, 4, ) defined
as in [2]:

G2(s, t) =

{
s− b, a ≤ t ≤ s,
t− b, s ≤ t ≤ b. (2.3)

G3(s, t) =

{
s− a, a ≤ t ≤ s,
t− a, s ≤ t ≤ b. (2.4)

G4(s, t) =

{
b− t, a ≤ t ≤ s,
b− s, s ≤ t ≤ b. (2.5)

In [2], it is also shown that all four Green functions are symmetric and continuous.
Moreover, all functions are convex with respect to both variables s and t. From these
functions we can obtain new identities, given in following lemma:
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Lemma 2.1. Let f : [a, b]→ R be twice differentiable function and Gl, (l = 2, 3, 4) are
defined in (2.3), (2.4) and (2.5). Then the following identities holds:

f(ξ) = f(b) + (b− ξ)f ′(a) +

b∫
a

G2(ξ, t)f ′′(t)dt, (2.6)

f(ξ) = f(b)− (b− a)f ′(b) + (ξ − a)f
′
(a) +

b∫
a

G3(ξ, t)f ′′(t)dt, (2.7)

f(ξ) = f(a) + (b− a)f ′(a)− (b− ξ)f
′
(b) +

b∫
a

G4(ξ, t)f ′′(t)dt. (2.8)

We can easily obtain these identities by using integration by parts by using
respective Green function. Now we state here main results related to the Fink identity
and the Green function.

Theorem 2.2. Fix l ∈ {1, 2, 3, 4}. Let f : [a, b] → R be such that for n ≥ 3, f (n−1)

is absolutely continuous. Let xi, yi ∈ [a, b], pi ∈ R for i ∈ {1, . . . ,m} be such that∑m
i=1 pi = 0 and

∑m
i=1 pixi = 0 and let P [a,b] (t, x) be the same as defined in (1.2). If

Gl are the Green functions as defined in (2.2)− (2.5), then we have

m∑
i=1

pif (xi) =

n−3∑
k=0

(
n− k − 2

k! (b− a)

)∫ b

a

(
m∑
i=1

piGl (xi, s)

)

×
(
f (k+1) (b) (s− b)k − f (k+1) (a) (s− a)

k
)
ds+

1

(n− 3)! (b− a)

×
∫ b

a

f (n) (t)

(∫ b

a

m∑
i=1

piGl (xi, s) (s− t)n−3 P [a,b] (t, s) ds

)
dt. (2.9)

Proof. First consider four identities (2.1), (2.6), (2.7) and (2.8), and putting x = ξi in
all these identities, multiplying each with pi, and then summing over each identity for
i ∈ {1, . . . ,m} and using conditions that

∑m
i=1 pi = 0,

∑m
i=1 piξi = 0 we get by fixing

l ∈ {1, 2, 3, 4}
m∑
i=1

pif(ξi) =

∫ b

a

(
m∑
i=1

piGl(ξi, t)

)
f ′′(t)dt. (2.10)

Differentiating Fink identity twice we easily get

f ′′ (x) =

n−3∑
k=0

n− k − 2

k!

f (k+1) (b) (x− b)k − f (k+1) (a) (x− a)
k

b− a

+
1

(n− 3)! (b− a)

∫ b

a

(x− t)n−3 P [a,b] (t, x) f (n) (t) dt, (2.11)
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and by using (2.11) in (2.10), we have

m∑
i=1

pif (xi) =

∫ b

a

(
m∑
i=1

piGl (xi, s)

)

×
n−3∑
k=0

n− k − 2

k!

f (k+1) (b) (s− b)k − f (k+1) (a) (s− a)
k

b− a
ds

+
1

(n− 3)! (b− a)

∫ b

a

m∑
i=1

piGl (xi, s)

(∫ b

a

(s− t)n−3 P [a,b] (t, s) f (n) (t) dt

)
ds.

Now by interchanging the integral and summation in the second term and by applying
Fubini’s theorem in the last term, we have (2.9). �

The following theorem is the integral version of Theorem 2.2.

Theorem 2.3. Fix l ∈ {1, 2, 3, 4}. Let f : [a, b] → R be such that for n ≥ 3, f (n−1) is
absolutely continuous on [a, b] and let p : [α, β]→ R and g : [α, β]→ [a, b] be integrable

functions such that
∫ β
α
p(x)dx = 0 and

∫ β
α
p(x)g(x)dx = 0. Let P [a,b] (t, x) be the same

as defined in (1.2). If Gl are the Green functions as defined in (2.2)− (2.5), then we
have

∫ β

α

p (x) f (g (x)) dx =

n−3∑
k=0

n− k − 2

k! (b− a)

∫ b

a

(∫ β

α

p (x)Gl (g (x) , s) dx

)
(
f (k+1) (b) (s− b)k − f (k+1) (a) (s− a)

k
)
ds+

1

(n− 3)! (b− a)

×
∫ b

a

f (n) (t)

(∫ b

a

(∫ β

α

p (x)Gl (g (x) , s) dx

)
(s− t)n−3 P [a,b] (t, s) ds

)
dt. (2.12)

Proof. Since the proof is similar to that of the previous theorem, we omit the details.
�

Here we introduce some notations which will be used in rest of the paper:

Ω
[a,b]
1 (m,x,p, t) =

∫ b

a

m∑
i=1

piGl (xi, s) (s− t)n−3 P [a,b] (t, s) ds, (2.13)

Ω
[a,b]
2 ([α, β], g, p, t) =

∫ b

a

∫ β

α

p (x)Gl (g (x) , s) dx (s− t)n−3 P [a,b] (t, s) ds.

(2.14)
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A
[a,b]
1 (m,x,p, f) =

m∑
i=1

pif (xi)−
n−3∑
k=0

(
n− k − 2

k! (b− a)

)∫ b

a

m∑
i=1

piGl (xi, s)

×
(
f (k+1) (b) (s− b)k − f (k+1) (a) (s− a)

k
)
ds (2.15)

A
[a,b]
2 ([α, β], g, p, f) =

∫ β

α

p (x) f (g (x)) dx

−
n−3∑
k=0

(
n− k − 2

k! (b− a)

)∫ b

a

(∫ β

α

p (x)Gl (g (x) , s) dx

)
×

(
f (k+1) (b) (s− b)k − f (k+1) (a) (s− a)

k
)
ds. (2.16)

The following theorem is our second main result of this section:

Theorem 2.4. Let all the assumptions of Theorem 2.2 be satisfied and let for n ≥ 3,
the inequality

Ω
[a,b]
1 (m,x,p, t) ≥ 0 (2.17)

holds. If f is n-convex, then we have

A
[a,b]
1 (m,x,p, f) ≥ 0. (2.18)

If opposite inequality holds in (2.17), then (2.18) holds in the reverse direction.

Proof. Since f (n−1) is absolutely continuous on [a, b], f (n) exists almost everywhere.
As f is n-convex, applying definition, we have, f (n) (x) ≥ 0 for all x ∈ [a, b]. Now by
using f (n) ≥ 0 and (2.17) in (2.9), we have (2.18). �

Corollary 2.5. Let all the assumptions of Theorem 2.2 be satisfied. In addition we let
m∑
i=1

pi(xi − xk)+ ≥ 0 for k ∈ {1, . . . ,m}.

Let n be even and n > 3. If the function f : [a, b] → R is n-convex, then inequality
(2.18) is satisfied, i. e.

m∑
i=1

pif (xi) ≥
n−3∑
k=0

n− k − 2

k! (b− a)

∫ b

a

m∑
i=1

piGl (xi, s)

×
(
f (k+1) (b) (s− b)k − f (k+1) (a) (s− a)

k
)
ds. (2.19)

Further if f (k+1) (a) ≤ 0 and (−1)kf (k+1) (b) ≥ 0 for k ∈ {0, 1, . . . , n− 3} then
m∑
i=1

pif(xi) ≥ 0.

Proof. We fix l ∈ {1, 2, 3, 4} and n > 3. As x and p are real m-tuples such that they
satisfy the assumption (1.5), by using the convex function x 7→ Gl (x, s) in (1.3), we
obtain

m∑
i=1

piGl (xi, s) ≥ 0. (2.20)
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For a ≤ s ≤ t, it is easy to see that∫ t

a

m∑
i=1

piGl (xi, s) (s− t)n−3 P [a,b] (t, s) ds ≥ 0 (2.21)

holds for even n. Now as f is n-convex for even n, by applying Theorem 2.4, we get
(2.19).

If a ≤ s ≤ b and k ∈ {0, . . . , n − 3}, then from assumptions f (k+1) (a) ≤ 0 and
(−1)kf (k+1) (b) ≥ 0 we have that

f (k+1)(b) (s− b)k − f (k+1)(a) (s− a)
k ≥ 0, (2.22)

So, from inequalities (2.19), (2.20) and (2.22) the non-negativity of the right hand
side of (2.19) is immediate. �

An integral version of our second main result states that:

Theorem 2.6. Let all the assumptions of Theorem 2.3 be satisfied and let for n ≥ 3,
the inequality

Ω
[a,b]
2 ([α, β], g, p, t) ≥ 0 (2.23)

holds. If f is n-convex, then we have

A
[a,b]
2 ([α, β], g, p, f) ≥ 0. (2.24)

If opposite inequality holds in (2.14), then (2.24) holds in the reverse direction.

Proof. The idea of the proof is the same as that of the proof of Theorem 2.4. By using
f (n) ≥ 0 and (2.14) in (2.12), we have (2.24). �

Corollary 2.7. Let all the assumptions of Theorem 2.3 be satisfied. In addition we let∫ β

α

p(x) (g(x)− t)n−1+ dx ≥ 0, for every t ∈ [a, b].

Let n be even and n > 3. If the function f : [a, b]→ R is n-convex, then we have∫ β

α

p (x) f (g (x)) dx ≥
n−3∑
k=0

n− k − 2

k! (b− a)

∫ b

a

(∫ β

α

p (x)Gl (g (x) , s) dx

)
×
(
f (k+1) (b) (s− b)k − f (k+1) (a) (s− a)

k
)
ds. (2.25)

Further if f (k+1) (a) ≤ 0 and (−1)kf (k+1) (b) ≥ 0 for k ∈ {0, 1 . . . , n − 3}, then the
right hand side of (2.25) is non-negative.

Proof. The proof is analogous to the proof of Corollary 2.5 but instead of Theorem
2.4, we apply Theorem 2.6. �
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3. Related inequalities for n-convex functions at a point

In this section we will give related results for the class of n-convex functions at
a point introduced in [14].

Definition 3.1. Let I be an interval in R, c a point in the interior of I and n ∈ N. A
function f : I → R is said to be n-convex at point c if there exists a constant K such
that the function

F (x) = f(x)− K

(n− 3)!
xn−1

is (n − 1)-concave on I ∩ (−∞, c] and (n − 1)-convex on I ∩ [c,∞). A function f is
said to be n-concave at point c if the function −f is n-convex at point c.

Let ei denote the monomials ei(x) = xi, i ∈ N0. First we state main results for
discrete case.

Theorem 3.2. Let c ∈ (a, b), x ∈ [a, c]m, y ∈ [c, b]l, p ∈ Rm, q ∈ Rl and f :

[a, b] → R be a function such that f (n−1) is absolutely continuous. Let Ω
[·,·]
1 (·, ·, ·, t)

and A
[·,·]
1 (·, ·, ·, f)be defined as in (2.13) and (2.15) and satisfy the following conditions:

Ω
[a,c]
1 (m,x,p, t) ≥ 0 for every t ∈ [a, c], (3.1)

Ω
[c,b]
1 (l,y,q, t) ≥ 0 for every t ∈ [c, b], (3.2)

and

A
[a,c]
1 (m,x,p, en) = A

[c,b]
1 (l,y,q, en). (3.3)

If f is (n+ 1)-convex at point c, then

A
[a,c]
1 (m,x,p, f) ≤ A[c,b]

1 (l,y,q, f). (3.4)

If inequalities in (3.1) and (3.2) are reversed, then (3.4) holds with the reverse sign of
inequality.

Proof. Let F = f − K
n!en be as in Definition 3.1, i. e., the function F is n-concave on

[a, c] and n-convex on [c, b]. Applying Theorem 2.4 to F on the interval [a, c] and on
the interval [c, b] we have

A
[a,c]
1 (m,x,p, F ) ≤ 0 ≤ A[c,b]

1 (l,y,q, F ).

Using definition of F we obtain

A
[a,c]
1 (m,x,p, f)− K

n!
A

[a,c]
1 (m,x,p, en) ≤ A[c,b]

1 (l,y,q, f)− K

n!
A

[c,b]
1 (l,y,q, en).

Since equality (3.3) is valid we get

A
[a,c]
1 (m,x,p, f) ≤ A[c,b]

1 (l,y,q, f). �

Remark 3.3. A closer look at the proof of Theorem 3.2 gives us that a similar result
hold if instead equality (3.3) we consider a positivity of the difference

K
(
A

[c,b]
k (l,y,q, en)−A[a,c]

k (m,x,p, en)
)
≥ 0.
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Corollary 3.4. Let j1, j2, n ∈ N, 2 ≤ j1, j2 ≤ n and let f : [a, b]→ R be (n+ 1)-convex
at point c. Let m-tuples x ∈ [a, c]m and p ∈ Rm satisfy (1.6) and (1.7) with n replaced
by j1, let l-tuples y ∈ [c, b]l and q ∈ Rl satisfy

l∑
i=1

qiy
k
i = 0, for all k = 0, 1, . . . , j2 − 1

l∑
i=1

qi(yi − t)j2−1+ ≥ 0, for every t ∈ [y(1), y(l−n+1)]

and let (3.3) holds. If n− j1 and n− j2 are even, then (3.4) holds.

Remark 3.5. For idea of the proof see [8, pp. 171-172].

Integral analogous of previous theorem may be stated as:

Theorem 3.6. Let c ∈ (a, b) and let g : [α, β]→ [a, c], p : [α, β]→ R, h : [γ, δ]→ [c, b],
q : [γ, δ] → R be integrable functions. Let f : I → R, [a, b] ⊂ I be a function such

that f (n−1) is absolutely continuous. Let Ω
[·,·]
2 (·, ·, ·, t) and A

[·,·]
2 (·, ·, ·, f) be defined as

in (2.14) and (2.16) satisfy the following conditions:

Ω
[a,c]
2 ([α, β], g, p, t) ≥ 0 for every t ∈ [a, c], (3.5)

Ω
[c,b]
2 ([γ, δ], h, q, t) ≥ 0 for every t ∈ [c, b], (3.6)

and

A
[a,c]
2 ([α, β], g, p, en) = A

[c,b]
2 ([γ, δ], h, q, en). (3.7)

If f is (n+ 1)-convex at point c (for k = 3, n ≥ 3), then

A
[a,c]
2 ([α, β], g, p, f) ≤ A[c,b]

2 ([γ, δ], h, q, f). (3.8)

If inequalities in (3.5) and (3.6) are reversed, then (3.8) holds with the reverse sign of
inequality.

Corollary 3.7. Let j1, j2, n ∈ N, 2 ≤ j1, j2 ≤ n and let f : [a, b]→ R be (n+ 1)-convex
at point c. Let integrable functions g : [α, β]→ [a, c], p : [α, β]→ R satisfy (1.9) with
n replaced by j1, let h : [γ, δ]→ [c, b], q : [γ, δ]→ R satisfy∫ δ

γ

q(x)h(x)k dx = 0, for all k ∈ {0, 1, . . . , j2 − 1}∫ δ

γ

q(x) (h(x)− t)j2−1+ dx ≥ 0, for every t ∈ [c, b].

and let (3.7) holds. If n− j1 and n− j2 are even, then (3.4) holds.
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4. Bounds for A
[·,·]
k (·, ·, ·, f) and Rk

n

Let f, h : [a, b] → R be two Lebesgue integrable functions. We consider the
Čebyšev functional

T (f, h) =
1

b− a

∫ b

a

f(x)h(x)dx−

(
1

b− a

∫ b

a

f(x)dx

)(
1

b− a

∫ b

a

h(x)dx

)
. (4.1)

The following results can be found in [3]:

Proposition 4.1. Let f : [a, b]→ R be a Lebesgue integrable function and let h : [a, b]→
R be an absolutely continuous function with (· − a)(b− ·)[h′]2 ∈ L[a, b]. Then we have
the inequality

|T (f, h)| ≤ 1√
2

(
1

b− a
|T (f, f)|

∫ b

a

(x− a)(b− x)[h′(x)]2dx

)1/2

. (4.2)

The constant 1√
2

in (4.2) is the best possible.

Proposition 4.2. Let h : [a, b] → R be a monotonic nondecreasing function and let
f : [a, b] → R be an absolutely continuous function such that f ′ ∈ L∞[a, b]. Then we
have the inequality

|T (f, h)| ≤ 1

2(b− a)
‖f ′‖∞

∫ b

a

(x− a)(b− x)dh(x). (4.3)

The constant 1
2 in (4.3) is the best possible.

We use the well-known Hölders inequality and bound for the Čebyšev functional
T (f, h). This bound is given in the following proposition in which the pre-Grüss
inequality is given [11].

Proposition 4.3. Let f, h : [a, b] → R be Lebesgue integrable functions such that fh :
[a, b] ∈ L(a, b). If

γ ≤ h(x) ≤ Γ for x ∈ [a, b],

then

|T (f, h)| ≤ 1

2
(Γ− γ)

√
T (f, f), (4.4)

Now by using aforementioned results, we are going to obtain generalizations of
the result proved in the previous section.

Remark 4.4. For the sake of brevity, in present and next sections at some places we

will use the notations Ak(f) = A
[·,·]
k (·, ·, ·, f) and Ωk(t) = Ω

[·,·]
k (·, ·, ·, t) for k ∈ {1, 2}

as defined in Theorems 2.4 and 2.6.

Now, we are ready to state main results of this section:

Theorem 4.5. Let f : [a, b]→ R be such that f (n) is an absolutely continuous function
for n ∈ N with (.− a)(b− .)[f (n+1)]2 ∈ L[a, b]. Then it holds for k ∈ {1, 2}

Ak(f) =

[
f (n−1)(b)− f (n−1)(a)

]
(n− 3)!(b− a)

∫ b

a

Ωk(s)ds+Rkn(f ; a, b),
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where the remainder Rkn(f ; a, b) satisfies the estimation

|Rkn(f ; a, b)| ≤ 1

(n− 3)!

(
(b− a)

2

∣∣∣∣∣T (Ωk,Ωk)

∫ b

a

(s− a)(b− s)[f (n+1)(s)]2ds

∣∣∣∣∣
)1/2

.

(4.5)

Proof. Fix k ∈ {1, 2}. If we apply Proposition 4.3 for f → Ωk and h→ f (n), then we
obtain ∣∣∣∣∣ 1

b− a

∫ b

a

Ωk(t)f (n)(t)dt−

(
1

b− a

∫ b

a

Ωk(t)dt

)(
1

b− a

∫ b

a

f (n)(t)dt

)∣∣∣∣∣
≤ 1√

2

(
1

b− a
|T (Ωk,Ωk)|

∫ b

a

(t− a)(b− t)[f (n+1)(t)]2dt

)1/2

.

Therefore we have

1

(n− 3)!

∫ b

a

Ωk(t)f (n)(t)dt =

[
f (n−1)(b)− f (n−1)(a)

]
(n− 3)!(b− a)

∫ b

a

Ωk(t)dt+Rkn(f ; a, b).

where Rkn(f ; a, b) satisfies inequality (4.5). Now from identities (2.9) and (2.12) for
k ∈ {1, 2} respectively, we obtain (4.5). �

By using Proposition 4.2 we obtain the following Grüss type inequality.

Theorem 4.6. Let f : [a, b]→ R be such that f (n) is an absolutely continuous function
for n ∈ N with (.− a)(b− .)[f (n+1)]2 ∈ L[a, b] with f (n+1) ≥ 0 on [a, b]. Then we have
the representation (4.5) and the remainder Rkn(f ; a, b) satisfies the following condition
for k ∈ {1, 2},

|Rkn(f ; a, b)| ≤ 1

(n− 3)!
‖Ω′k‖∞

{
b− a

2

[
f (n−1)(b) + f (n−1)(a)

]
−
[
f (n−2)(b)− f (n−2)(a)

]}
. (4.6)

Proof. Fix k ∈ {1, 2}. If we apply Proposition 4.2 for f → Ωk and h→ f (n), then we
obtain ∣∣∣∣∣ 1

b− a

∫ b

a

Ωk(t)f (n)(t)dt−

(
1

b− a

∫ b

a

Ωk(t)dt

)(
1

b− a

∫ b

a

f (n)(t)dt

)∣∣∣∣∣
≤ 1

2(b− a)
‖Ω′k‖∞

∫ b

a

(t− a)(b− t)f (n+1)(t)dt.

Since∫ b

a

(t− a)(b− t)f (n+1)(t)dt =

∫ b

a

(2t− a− b)f (n)(t)dt

= (b− a)
[
f (n−1)(b) + f (n−1)(a)

]
− 2

[
f (n−2)(b)− f (n−2)(a)

]
. (4.7)

Therefore, by using the identities (2.9) and (2.12) for k ∈ {1, 2} respectively and (4.7)
we deduce (4.6). �
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Theorem 4.7. For k = 1 we assume that x and p satisfy the assumptions of Theorem
2.2 and for k = 2 we assume that x and p satisfy the assumptions of Theorem 2.3.
Let k ∈ {1, 2}. Let f : I → R, [a, b] ⊆ I, be such that f (n) is an absolutely continuous
function and

γ ≤ f (n)(x) ≤ Γ for x ∈ [a, b].

Then

Ak(f) =

[
f (n−1)(b)− f (n−1)(a)

]
(n− 3)!(b− a)

∫ b

a

Ωk(t)dt+Rkn(f ; a, b), (4.8)

where the remainder Rkn(f ; a, b) satisfies the estimation

|Rkn(f ; a, b)| ≤ b− a
2(n− 3)!

(Γ− γ)
√
T (Ωk,Ωk). (4.9)

Proof. Fix k ∈ {1, 2}. Using definition of Ak and result from the second section we
have

Ak(f) =
1

(n− 3)!

∫ b

a

f (n)(t)Ωk(t)dt

=
1

(n− 3)!(b− a)

∫ b

a

f (n)(t)dt

∫ b

a

Ωk(t)dt+Rkn(f ; a, b)

=

[
f (n−1)(b)− f (n−1)(a)

]
(n− 3)!(b− a)

∫ b

a

Ωk(t)dt+Rkn(f ; a, b),

where

Rkn(f ; a, b) =
1

(n− 3)!

(∫ b

a

f (n)(t)Ωk(t)dt− 1

b− a

∫ b

a

f (n)(s)ds

∫ b

a

Ωk(t)dt

)
.

If we apply Proposition 4.3 for f → Ωk and h→ f (n), then we obtain

|Rkn(f ; a, b)| = |T (Ωk, f
(n))| ≤ b− a

2(n− 3)!
(Γ− γ)

√
T (Ωk,Ωk). �

Theorem 4.8. Let k ∈ {1, 2}. Let (q, r) be a pair of conjugate exponents, that is,
1 ≤ q, r ≤ ∞, 1

q + 1
r = 1. Let f (n) ∈ Lq [a, b] for some n ∈ N, n > 1. Further, for

k = 1 we assume that x and p satisfy the assumptions of Theorem 2.2 and for k = 2
we assume that x and p satisfy the assumptions of Theorem 2.3. Then we have

|Ak(f)| ≤ 1

(n− 3)!
‖f (n)‖q‖Ωk‖r. (4.10)

The constant on the right hand side of (4.10) is sharp for 1 < q ≤ ∞ and the best
possible for q = 1.

Proof. Fix k ∈ {1, 2}. From definition of Ak and results from the second section,
applying the Hölder inequality we get

|Ak(f)| =

∣∣∣∣∣ 1

(n− 3)!

∫ b

a

f (n)(t)Ωk(t)dt

∣∣∣∣∣ ≤ ‖f (n)‖q‖λk‖r
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where we denoted 1
(n−3)!Ωk by λk.

The sharpness of the constant
(∫ b

a
|λk(t)|r ds

)1/r
can be proved by considering

the following function f for which the equality in (4.10) is obtained.
For 1 < q < ∞ we take f to be such that f (n)(s) = sgnλk(t) · |λk(t)|1/(q−1),

while for q =∞, we define f such that f (n)(t) = sgnλk(t). The fact that (4.10) is the
best possible for q = 1, can be proved as in [7, Thm 12]. �

5. Mean value results

In this section we consider mean value theorems involving Ak. Throughout the
section we use this agreement that if k ∈ {1, 2}, then n ≥ 3. Further k = 1 we assume
that x and p satisfy the assumptions of Theorem 2.2 and for k = 2 we assume that
x and p satisfy the assumptions of Theorem 2.3.

Theorem 5.1. Let k ∈ {1, 2} and let us consider Ak as a functional on Cn[a, b]. If
corresponding conditions from set {(2.13), (2.14)} related to the fixed k, hold, then
there exists ξk ∈ [a, b] such that

Ak(f) = f (n)(ξk)Ak(f0), (5.1)

where f0(x) = xn

n! .

Proof. Let us define functions

F1(x) = Mf0(x)− f(x)

and
F2(x) = f(x)− Lf0(x)

where L and M are minimum and maximum of the image of [a, b], i.e.,

F (n)([a, b]) = [L,M ]

Then F1 and F2 are n−convex. Hence Ak(F1) ≥ 0 and Ak(F2) ≥ 0 and

LAk(f0) ≤ Ak(f) ≤MAk(f0).

If Ak(f0) = 0, then the statement obviously holds.

If Ak(f0) 6= 0, then Ak(f)
Ak(f0)

∈ [L,M ] = f (n)([a, b]), so there exist ξk ∈ [a, b] such that

Ak(f)

Ak(f0)
= f (n)(ξk). �

Applying Theorem 5.1 on function ω = Ak(h)f − Ak(f)h, we get the following
result.

Theorem 5.2. Let k ∈ {1, 2} and let us consider Ak as a functional on Cn[a, b]. If
corresponding conditions from set {(2.13), (2.14)} related to the fixed k, hold, then
there exists ξk ∈ [a, b] such that

Ak(f)

Ak(h)
=
f (n)(ξk)

h(n)(ξk)

assuming that both the denominators are non-zero.
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Remark 5.3. If the inverse of f(n)

h(n) exists, then from the above mean value theorems
we can give generalized means

ξk =

(
f (n)

h(n)

)−1(
Ak(f)

Ak(h)

)
. (5.2)

Remark 5.4. Using the same method as in [7], we can construct new families of
exponentially convex functions and Cauchy type means.
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