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A weighted logarithmic barrier interior-point
method for linearly constrained optimization
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Abstract. In this paper, a weighted logarithmic barrier interior-point method
for solving the linearly convex constrained optimization problems is presented.
Unlike the classical central-path, the barrier parameter associated with the per-
turbed barrier problems, is not a scalar but is a weighted positive vector. This
modification gives a theoretical flexibility on its convergence and its numerical
performance. In addition, this method is of a Newton descent direction and the
computation of the step-size along this direction is based on a new efficient tech-
nique called the tangent method. The practical efficiency of our approach is shown
by giving some numerical results.
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1. Introduction

In this paper, we consider the linearly convex constrained optimization (LCCO)
problem:

p̄ = min f(x) subject to x ∈ F , (P )

where the objective function f : Rn → R is twice differentiable and convex over the
feasible set F = {x ∈ Rn : x ≥ 0, Ax = b}, A is a given (m×n) matrix with full rank
row m and b ∈ Rm.
This problem has many important applications in theory as well in practice. In par-
ticular, it includes linear and quadratic optimization. Feasible logarithmic barrier
interior-point methods gained much more attention than others. Their derived algo-
rithms enjoy some interesting results such as polynomial complexity and numerical
efficiency. However, these algorithms require that the starting point must be strictly
feasible and close to the central-path.This is a hard practical task to release and even
impossible. On the other hand, at each iteration, they compute a descent direction and
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determine a step-size on this direction. It is known that computing this latter is very
expensive while using classical line search methods. In order to overcome these two dif-
ficulties, we suggest for the first, a weighted-path (see [1], [2], [3], [8], [10], [12]) where
a relaxation parameter associated with perturbed problems is introduced in order to
give more flexibility on the numerical aspects. Beside, we propose a new numerical ef-
ficient procedure called the tangent method for determining this displacement. Across
these two modifications the numerical results obtained by our algorithm are totally
improved with respect to the classical logarithmic barrier interior-point approach (see
[10], [13]). The paper is organized as follows. In section 2, perturbed relaxation prob-
lems based on the weighted barrier penalization are given where the convergence to
the original problem is studied. The computation of the direction and of the step-size
are stated. Finally, a weighted-path interior-point algorithm is presented. In section
3, some numerical results are given to show the efficiency of our approach. Finally a
conclusion and remarks end the section 4.

2. The weighted barrier penalization

Throughout the paper, we assume that the following assumptions hold.

1. There exit a strictly feasible point x0 > 0 such that Ax0 = b.
2. The set of optimal solutions of P is non empty bounded set.

It follows from the second hypothesis that

{d ∈ Rn : f∞(d) ≤ 0, d ≥ 0, Ad = 0} = {0},
where f∞ denote the recession function of f . We deduce from the optimality conditions
that x∗ is a solution of P if and only if there exists an y∗ ∈ Rm and z∗ ∈ Rn such
that

∇f(x∗) +AT y∗ = z∗ ≥ 0, Ax∗ = b, 〈z∗, x∗〉 = 0, x∗ ≥ 0. (2.1)

2.1. The weighted perturbed problems

Let us define the function θ : R × R → (−∞,+∞] by

θ(t, w) =

 t(log t− logw) if t > 0, w > 0,
0 if t = 0, w ≥ 0,
+∞ otherwise.

The function θ is convex, lower semi-continuous and proper. We consider now the
following function defined on Rn+ × Rn+ by

ϕ(µr, x) =

 f(x) +

n∑
i=1

θ(µri, xi) if x ∈ F ,

+∞ otherwise,

where µ > 0 is the barrier parameter and r = (r1, r2, . . . , rn)T ∈ Rn+, the vector of
the weight associated with the barrier function.
Finally, we introduce the function pr defined by

pr(µ) = inf
x

[ϕrµ(x) = ϕ(µr, x) : x ∈ Rn]. (P rµ)
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The function pr is convex since ϕrµ is convex. By construction, P r0 is only the problem
P with p̄ = pr(0). The function ϕrµ is convex, lower semi-continuous and proper, its
recession function is given by

(ϕrµ)∞(d) = lim
α→+∞

ϕrµ(x0 + αd)− ϕrµ(x0)

α
.

We obtain

(ϕrµ)∞(d) =

{
f∞(d) if d ≥ 0, Ad = 0,
+∞ otherwise.

Then

{d ∈ Rn : (ϕrµ)∞(d) ≤ 0} = {d ∈ Rn : f∞(d) ≤ 0, d ≥ 0, Ad = 0},

where d is the descent direction and α is the step-size.
Since this set is reduced to {0} then the problem P rµ admits an optimal solution for
each µ > 0. The function ϕrµ is strictly convex for all µ ≥ 0 and r ≥ 0, then P rµ has
an unique optimal solution denoted by xrµ.

2.2. Convergence of the weighted perturbed solutions to the optimal solution of P rµ

The necessary and sufficient optimality conditions of (P rµ) imply that there exits
yrµ = y(µ, r) ∈ Rm, such that

∇f(xrµ)− µX−1r +AT yrµ = 0, (2.2)

Axrµ = b, (2.3)

where X = Diag(xrµ).
Note that yrµ is uniquely defined since A is of full rank row. In fact, the couple (xrµ, y

r
µ)

is the solution of the system H(x, y) = 0 where

H(x, y) =

(
∇f(x)− µX−1r +AT y
Ax− b

)
.

By the implicit function theorem, the functions µ 7→ x(µ, r) = xrµ and µ 7→ y(µ, r) =
yrµ are differentiable on (0,∞) and we have,(

∇2f(xrµ) + µRX−2 AT

A 0

)(
x′(µ, r)
y′(µ, r)

)
=

(
X−1r

0

)
, (2.4)

where R=Diag(r), it follows that the function pr is differentiable on (0,∞). Recall
that

pr(µ) = f(xrµ) + µ

n∑
i=1

ri(lnµri − ln(xi)
r
µ),

and then

(pr(µ))′ =

n∑
i=1

ri(1 + lnµri − ln(xi)
r
µ) + 〈∇f(xrµ)− µX−1r, x′(µ, r)〉.
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In view of (2.2) and (2.4)

(pr(µ))′ =

n∑
i=1

ri(1 + lnµri − ln(xi)
r
µ)− 〈AT yrµ, x′(µ, r)〉,

=

n∑
i=1

ri(1 + lnµri − ln(xi)
r
µ)− 〈yrµ, Ax′(µ, r)〉,

=

n∑
i=1

ri(1 + lnµri − ln(xi)
r
µ).

Since xrµ ∈ F and pr is convex we obtain:

f(xrµ) ≥ p̄ = pr(0) ≥ pr(µ) + (0− µ)(pr(µ))′ = f(xrµ)− µ‖r‖1.

Consequently, we have

p̄ ≤ f(xrµ) ≤ p̄+ µ‖r‖1.

Then if

µ 7→ 0, f(xrµ) = p̄.

Now, we interested to the weighted-path of {xrµ} when µ 7→ 0.
i) Case where f is strongly convex with coefficient τ > 0. Hence P has a unique
optimal solution x∗, and we have

µ‖r‖1 ≥ f(xrµ)− f(x∗) ≥ 〈∇f(x∗), xrµ − x∗〉+
τ

2
‖xrµ − x∗‖2.

In view of (2.1), we deduce

µ‖r‖1 ≥ 〈z∗, xrµ〉+
τ

2
‖xrµ − x∗‖2 ≥

τ

2
‖xrµ − x∗‖2,

‖xrµ − x∗‖ ≤
√

2µ‖r‖1
τ

.

ii) For the case where f is only convex is more complex. Note first that for µ ≤ 1,

xrµ ∈ {x : x ≥ 0, Ax = b, f(x) ≤ ‖r‖1 + p̄}.

This set is closed convex non empty. Its recession cone is

{d ∈ Rn : f∞(d) ≤ 0, d ≥ 0, Ad = 0} = {0}.

By the second assumption the set of optimal solutions of P is bounded which implies
that each adherence value of {xrµ} when µ 7→ 0 is an optimal solution of P .

Remark 2.1. If r = e, where e is the vector of ones, then the weighted-path coincides
with the classical path (see[6]).
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2.3. The description of the method

Letting F0 = {x ∈ Rn : x > 0, Ax = b } the set of strictly feasible points.
The principle of the method is as follows: Let (µkr, xk) ∈ Rn+×F0, the current iterate.

1. We make an approximated minimization of the weighted perturbed P rµk
which

gives a new point xk+1 such that ϕ(µk+1r, xk+1) < ϕ(µkr, xk).

2. We take µk+1 < µk.

We iterated until we obtained an approximated optimal solution of the original prob-
lem. The weighted perturbed problem is defined by

min
x

ϕrµ(x) = min
x

[ f(x) +

n∑
i=1

θ(µri, xi) : x ∈ F ]. (P rµ)

2.4. The Newton descent direction

At x ∈ F0, the Newton descent direction d is given by solving the following
quadratic convex program:

min
d

[ 〈∇ϕrµ(x), d〉+
1

2
〈∇2ϕrµ(x)d, d〉 : Ad = 0 ].

It suffices to solve the linear system with n+m equations(
∇2f(x) + µRX−2 AT

A 0

)(
d
s

)
=

(
µX−1r −∇f(x)

0

)
, (2.5)

where s ∈ Rm .
It easy to prove that the linear system (2.5) has a unique solution. The descent
direction being thus obtained, it is now question of minimizing a function of one real
variable to obtain the step-size α.

γr(α) = ϕrµ(x+ αd)− ϕrµ(x) = f(x+ αd)− f(x) − µ
n∑
i=1

ri ln(1 + αti),

where t = X−1d, the function γr is convex.
Next task, we propose a new method to determine the step-size.

2.5. A tangent method for determining the step-size

Our approach is try out a sequence of candidate values for α, when the
condition (γr(α))′ ≤ ε is satisfied, stopping and accept this value. We can say that
this technique is done in two phases.

1. The first phase finds an interval containing the required step-size, the choice of
the bounds of the interval is similar to the bisection method, when we restrict
the value of α until we find the required value.

2. The second phase computes the optimal step-size within this interval, in this
phase we determine the tangents T1 and T2 in the bounds of the interval and we
select the value corresponding to the intersection of the tangents T1 and T2.
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The upper bound on the step-size α is given by

αmax = min

{
−xi
di

; i ∈ Î
}
,

where

Î = {i : di < 0} .

Because the convexity of the function γr(α), this technique will be more efficiency in
practice, the next figures shows clearly this idea:

Figure 1 Figure 2

Figure 3
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The tangent algorithm for determining the step-size is follows.

Algorithm
Input

- An accuracy parameter ε > 0;
- A threshold parameter 0 < β < 1;
a = 0, b = βαmax, such that (γr(αmax))′ > 0;
α = b

2 ;
While|(γr(α))′| > ε do

if (γr(α))′ > 0 then
b = α;

if not
a = α ;
end if

α = −(γr(b))′b+γr(b)+(γr(a))′a−γr(a)
(γr(a))′−(γr(b))′ ;

End While

We are now ready to state the generic algorithm for solving LCCO.

The generic algorithm

Threshold parameters ε > 0, µ̄ > 0 and λ ∈ [0, 1], are given;
Start with x0 ∈ F0, µ > µ̄ and a weight vector r > 0;

1) Solve the linear system (2.5) to obtain d;
2) Take t = X−1d;
If ‖t‖ ≥ ε
- Determinate α̃ with tangent method ;
- Update xk+1 = xk + α̃dk, µk+1 = λµk and return to 1;
If ‖t‖ ≤ ε
Case 1. µk ≤ µ̄
STOP we have obtained a good approximation of the optimal solution of P ;

Case 2. µk > µ̄
We have obtained a good approximation of pr(µ), do µk+1 = λµk and go to 1;

3. Numerical results

In the following section, we apply our algorithm on some different examples
of LCCO. A comparative numerical tests with a classical line search are presented,
Our implementation is done by the Scilab 5.4.1. We use in the sequel the following
notation.
Method 1: the first alternative uses the tangent technique.
Method 2: the second alternative uses the Wolfe method.
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Outer: the number of outer iterations.
Inner: the number of inner iterations.
Objective: the optimal value of the objective function p̄.
Time: the time measured in seconds. Our tolerance is ε = 10−6 in all our testing
examples.
The below examples are taken from literature [10], the numerical obtained results

with different values of r such as r1 = (0.9, 1, 0.03)T , r2 = (2, 1, 3, 1, 4)
T

,

r3 = (1, 1, 0.4, 1, 0.4, 1, 0.4, 0.4, 1, 0.96)
T

and

r4 =

(
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1
0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3

)
,

are summarized in table 1.

Method 1 Method 2
Example Size (m,n) Inner Outer Inner Outer
1 (2,3) 7 7 162 7
2 (3,5) 24 6 46 8
3 (3,10) 20 7 40 8
4 (10,20) 25 7 83 7

Table 1.

In the following, we compare our approach with the classical path method (non
weighted case).

Example with variable size. We consider the following LCCO problem:

p̄ = min[f(x) : x ≥ 0, Ax = b],

where f(x) =

n∑
i=1

xi lnxi, bi = 1 and

A[i, j] =

{
1 if i = j or j = i+m),
0 else,

}
,withn = 2m.

The strictly feasible starting point is:

x0 =
(

0.7, . . . , 0.7, 0.3, . . . , 0.3
)T
.

The exact solution is:

x∗ =
(

0.5, 0.5, . . . , 0.5
)T
.

The optimal values with different size of n are:

n 20 400 900
Objective -6.9314718 -138.62944 -311.911623

The obtained numerical results with different size of n and barrier parameter µ are
stated in tables 2 and 3.
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Weighted case

The weigh vector is r = (0.011, . . . , 0.011, 0.022 . . . , 0.022)T .
n = 20 n = 400 n = 900

µ Outer Time Outer Time Outer Time
0.01 2 0.296×10−3 2 0.17160 2 23.476212
0.25 4 0.316×10−3 4 0.28762 4 32.40515
1 5 0.499×10−3 5 0.355702 5 41.84014
5 6 0.665×10−3 6 0.400961 6 52.96016

Table 2.

Non weighted case

n = 20 n = 400 n = 900
µ Outer Time Outer Time Outer Time
0.01 4 0.325×10−3 4 0. 2915518 4 33.147112
0.25 6 0.482×10−3 6 0.3832547 6 40.40114
1 7 0.591×10−3 7 0.4512415 7 49.88745
5 8 0.835×10−3 8 0.6001489 8 58.91456

Table 3.

4. Conclusion and remarks

In this paper we have introduced a relaxation of the classical path of the per-
turbed LCCO problem and we have presented a new technique for determining the
step-size. These have a great influence on the acceleration of the convergence of the
algorithm i.e., the number of iterations and the time produced are reduced signifi-
cantly. This analysis may be extended to inducing a general weight vector w > 0 as
the barrier parameter instead of the form µr with r > 0.
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Bolyai Informatica, 47(2002), no. 1, 3-12.
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Laboratoire de Mathématiques Fondamentales et Numériques,
Sétif1, Sétif 19000, Algérie
e-mail: bmerikhi@univ-setif.dz

Mohamed Achache
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