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Abstract. This paper is devoted to study the existence of a solution to Hilfer frac-
tional differential equation with nonlocal boundary condition in Banach spaces.
We use the equivalent integral equation to study the considered Hilfer differ-
ential problem with nonlocal boundary condition. The Mönch type fixed point
theorem and the measure of the noncompactness technique are the main tools in
this study. We demonstrate the existence of a solution with a suitable illustrative
example.
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1. Introduction

The calculus of arbitrary order has been extensively studied in the last four
decades. It has been proved to be an adequate tool in almost all branches of science and
engineering. Because of its widespread applications, fractional calculus is becoming an
integral part of applied mathematics research. Indeed, fractional differential equations
have been found useful to describe abundant phenomena in physics and engineering,
and the modest amount of work in this direction has taken place, see [1, 4, 9] and
references therein. For basic development and theoretical applications of fractional
differential equations, see [15, 17].

In the past two decades, the fractional differential equations are extensively
studied for existence, uniqueness, continuous dependence and stability of the solution.
For some fundamental results in existence theory of various fractional differential
problems with initial and boundary conditions, see survey papers [1, 4], the monograph
[17], the research papers [2, 3, 7, 5, 6, 8, 9, 10, 11, 12, 16, 20, 22] and references therein.
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Recently, in [22], Wang and Zhang obtained some existence of the solutions of
IVP for the class of Hilfer FDEs:

Dµ,ν
0+ z(t) = f(t, z(t)), 0 < µ < 1, 0 ≤ ν ≤ 1, t ∈ (a, b] (1.1)

I1−γ
a+ z(a+) =

m∑
k=1

λkz(τk), τk ∈ (a, b], µ ≤ γ = µ+ ν(1− µ), (1.2)

by using fixed point theorems of Krasnoselskii and Schauder.
In the year 2018, Thabet et al. [19] investigated the existence of a solution to

BVP for Hilfer FDEs:

Dµ,ν
a+ z(t) = f (t, z(t), Sz(t)) , 0 < µ < 1, 0 ≤ ν ≤ 1, t ∈ (a, b], (1.3)

I1−γ
a+

[
uz(a+) + vz(b−)

]
= w, µ ≤ γ = µ+ ν(1− µ), u, v, w ∈ R, (1.4)

by using the Mönch fixed point theorem.
Motivated by works cited above, in this paper, we consider the nonlocal boundary

value problem for a class of Hilfer fractional differential equations (HNBVP):

Dµ,ν
a+ z(t) = f(t, z(t)), 0 < µ < 1, 0 ≤ ν ≤ 1, t ∈ (a, b], (1.5)

I1−γ
a+ cz(a+) + I1−γ

a+ dz(b−) =

m∑
k=1

λkz(τk), τk ∈ (a, b], µ ≤ γ = µ+ ν(1− µ), (1.6)

where Dµ,ν
a+ is the Hilfer fractional derivative of order µ and type ν, I1−γ

a+ is the
Riemann-Liouville fractional integral of order 1− γ, f : (a, b]×E → E be a function
such that f(t, z) ∈ C1−γ([a, b], E) for any z ∈ C1−γ([a, b], E), E is a Banach space,
c, d ∈ R, and τk (k = 1, 2, ...,m) are prefixed points satisfying a < τ1 < τ2 < ... <
τm < b, λk are real numbers.
The measure of noncompactness technique and a fixed point theorem of Monch type
are the main tools in this analysis.

The paper is organized as follows: Some preliminary concepts related to our
problem are listed in Section 2 which will be useful in the sequel. In Section 3, we first
establish an equivalent integral equation of BVP and then we present the existence
of its solution. An illustrative example is provided in the last section.

2. Preliminaries

In this section, we present some definitions, lemmas and weighted spaces which
are useful in further development of this paper.

Let J1 = [a, b] and J2 = (a, b](∞ < a < b < +∞). Let C(J1, E), be the Banach
spaces of all continuous function g : J1 → E with the norm ‖g‖∞ = sup{|g(t)|; t ∈ J1}.
Here Lp(J1, E), p > 1, is the Banach space of measurable functions on J1 with the
Lp norm where

‖g‖Lp =

(∫ b

a

|g(s)|p ds

) 1
p

<∞.
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Let L∞(J1, E) be the Banach space of measurable functions z : J1 −→ E which are
bounded and equipped with the norm ‖z‖L∞ = inf{e > 0 : ‖z‖ ≤ e, a.e t ∈ J1}.
Moreover, for a given set V of functions v : J1 −→ E let us denote by

V(t) = {v(t) : v ∈ V; t ∈ J1},

V(J1) = {v(t) : v ∈ V; t ∈ J1}.

Definition 2.1. [17] Let µ > 0. The left sided Riemann-Liouville fractional integral of
order µ of g ∈ L1(J1, E) is defined by

Iµa+g(t) =
1

Γ(µ)

∫ t

a

(t− s)µ−1g(s)ds, t > a, (2.1)

where Γ(·) is the Euler’s Gamma function and a ∈ R.

Definition 2.2. [17] Let n− 1 < µ < n. The left sided Riemann-Liouville and Caputo
fractional derivatives of order µ of g ∈ L1(J1, E) are defined by

Dµ
a+g(t) =

1

Γ(n− µ)

dn

dtn

∫ t

a

(t− s)n−µ−1g(s)ds, t > a, (2.2)

and

CDµ
a+g(t) =

1

Γ(n− µ)

∫ t

a

(t− s)n−µ−1g(n)(s)ds, t > a,

respectively, where n = [µ] + 1, and [µ] denotes the integer part of µ.

Definition 2.3. [15] The left sided Hilfer fractional derivative of function g ∈ L1(J1, E)
of order 0 < µ < 1 and type 0 ≤ ν ≤ 1 is denoted as Dµ,ν

a+ and defined by

Dµ,ν
a+ g(t) = I

ν(1−µ)
a+ DI

(1−ν)(1−µ)
a+ g(t), D =

d

dt
. (2.3)

where Iµa+ and Dµ
a+ are Riemann-Liouville fractional integral and derivative defined

by (2.1) and (2.2), respectively.

Remark 2.4. From Definition 2.3, we observe that:

(i) The operator Dµ,ν
a+ can be written as

Dµ,ν
a+ = I

ν(1−µ)
a+ DI

(1−γ)
a+ = I

ν(1−µ)
a+ Dγ , γ = µ+ ν(1− µ).

(ii) The Hilfer fractional derivative can be regarded as an interpolator between the
Riemann-Liouville derivative (ν = 0) and Caputo derivative (ν = 1) as

Dµ,ν
a+ =

{
DI

(1−µ)
a+ = Dµ

a+ , if ν = 0;

I
(1−µ)
a+ D = CDµ

a+ , if ν = 1.

(iii) In particular, if γ = µ+ ν(1− µ), then

(Dµ,ν
a+ g)(t) =

(
I
ν(1−µ)
a+

(
Dγ
a+g
))

(t),

where
(
Dγ
a+g
)

(t) = d
dt

(
I

(1−ν)(1−µ)
a+ g

)
(t).
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Definition 2.5. [17] Let 0 ≤ γ < 1. The weighted spaces Cγ(J1, E) and Cn1−γ(J1, E)
are defined by

Cγ(J1, E) = {g : J2 → E : (t− a)γg(t) ∈ C(J1, E)},
and

Cnγ (J1, E) = {g : J2 → E, g ∈ Cn−1(J1, E) : g(n)(t) ∈ Cγ(J1, E)}, n ∈ N

with the norms

‖g‖Cγ = ‖(t− a)γg‖C = sup{|(t− a)γg(t)| : t ∈ J1},

and

‖g‖Cn1−γ =

n−1∑
k=0

‖g(k)‖
C

+ ‖g(n)‖C1−γ
, (2.4)

respectively. Furthermore we recall following weighted spaces

Cµ,ν1−γ(J1, E) =
{
g ∈ C1−γ(J1, E) : Dµ,ν

a+ g ∈ C1−γ(J1, E)
}
, γ = µ+ ν(1− µ) (2.5)

and

Cγ1−γ(J1, E) =
{
g ∈ C1−γ(J1, E) : Dγ

a+g ∈ C1−γ(J1, E)
}
, γ = µ+ ν(1− µ).

Let 0 < µ < 1, 0 ≤ ν ≤ 1 and γ = µ + ν(1 − µ). Clearly, Dµ,ν
a+ g = I

ν(1−µ)
a+ Dγ

a+g and
Cγ1−γ(J1, E) ⊂ Cµ,ν1−γ(J1, E).

Lemma 2.6. [9] If µ > 0, ν > 0 and g ∈ L1(J1, E) for t ∈ [a, b], then the following
properties hold:(

Iµa+I
ν
a+g
)

(t) =
(
Iµ+ν
a+ g

)
(t) and

(
Dµ
a+I

ν
a+g
)

(t) = g(t).

In particular, if g ∈ Cγ(J1, E) or g ∈ C(J1, E), then the above properties hold for
each t ∈ J2 or t ∈ J1 respectively.

Lemma 2.7. [17] Let µ > 0 and δ > 0. Then for t > a, we have

(i). Iµa+(t− a)δ−1 = Γ(δ)
Γ(δ+µ) (t− a)δ+µ−1,

(ii). Dµ
a+(t− a)µ−1 = 0, µ ∈ (0, 1).

Lemma 2.8. [15] Let µ > 0, ν > 0 and γ = µ+ ν(1− µ). If g ∈ Cγ1−γ(J1, E), then

Iγa+D
γ
a+g = Iµa+D

µ,ν
a+ g, D

γ
a+I

µ
a+g = D

ν(1−µ)
a+ g.

Lemma 2.9. [15] Let 0 < µ < 1, 0 ≤ ν ≤ 1 and g ∈ C1−γ(J1, E). Then

Iµa+D
µ,ν
a+ g(t) = g(t)−

I
(1−ν)(1−µ)
a+ g(a)

Γ(µ+ ν(1− µ))
(t− a)µ+ν(1−µ)−1.

Moreover, if γ = µ+ ν(1− µ), g ∈ C1−γ(J1, E) and I1−γ
a+ g ∈ C1

1−γ(J1, E), then

Iγa+D
γ
a+g(t) = g(t)−

I1−γ
a+ g(a)

Γ(γ)
(t− a)γ−1.
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Lemma 2.10. [16] If 0 < µ ≤ γ < 1 and g ∈ Cγ(J1, E), then

(Iµa+g)(a) = lim
t→a+

Iµa+g(t) = 0.

Lemma 2.11. [18] Let E be a Banach space and let ΥE be the bounded subsets of E.
The Kuratowski measure of noncompactness is the map α : ΥE −→ [0,∞)defined by

α(S) = inf{ε > 0 : S ⊂ ∪mi=1Si and the diam (Si) ≤ ε};S ⊂ ΥE .

Lemma 2.12. [14, 13] For all nonempty subsets S1,S2 ⊂ E. The Kuratowski measure
of noncompactness α(·) satisfies the following properties:

1. α(S) = 0⇐⇒ S is compact (S is relatively compact);
2. α(S) = α(S) = α(convS), where where S and convS denote the closure and

convex hull of the bounded set S respectively;
3. S1 ⊂ S2 =⇒ α(S1) ≤ α(S2);
4. α(S1 + S2) ≤ α(S1) + α(S2), where S1 + S2 = {s1 + s2 : s ∈ S1, s ∈ S2};
5. α(κS) = |κ|α(S), κ ∈ R;

Lemma 2.13. [18] Let B be a bounded, closed and convex subset of a Banach space
E such that 0 ∈ B, and let T be a continuous mapping of B into itself. If for every
subset V of B

V =coT (V) or V = T (V) ∪ {0} =⇒ α(V)=0

holds. Then T has a fixed point.

Lemma 2.14. [21] Let B be a bounded, closed and convex subset of a Banach space
C(J1, E), F is a continuous function on J1 × J1; and a function f : J1 × E −→ E
satisfying the Carathéodory conditions, and assume there exists ρ ∈ LP (J1,R+) such
that, for each t ∈ J1 and each bounded set B∗ ⊂ E; one has

lim
r−→0+

α(f(Jt,r × B∗)) ≤ ρ(t)α(B∗),where Jt,r ∈ [t− r, t] ∩ J1.

If V is an equicontinuous subset of B; then

α

({∫
J1

F (t, s)f(s, z(s))ds : z ∈ V
})
≤
∫
J1

‖F (t, s)‖ ρ(s)α(V(s))ds.

Lemma 2.15. [10] Let γ = µ + ν(1 − µ) where 0 < µ < 1 and 0 ≤ ν ≤ 1. Let
f : (a, b]× R → R be a function such that f(t, z) ∈ C1−γ [a, b] for any z ∈ C1−γ [a, b].
If z ∈ Cγ1−γ [a, b], then z satisfies IVP

Dµ,ν
a+ z(t) = f(t, z(t)), 0 < µ < 1, 0 ≤ ν ≤ 1, t ∈ [a, b],

I1−γ
a+ z(0+) = za, µ ≤ γ

if and only if z satisfies the Volterra integral equation

z(t) =
za

Γ(γ)
(t− a)γ−1 +

1

Γ(µ)

∫ t

a

(t− s)µ−1f(s, z(s))ds, t > a. (2.6)
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3. Main results

Now we prove the existence of solution of HNBVP (1.5)-(1.6) in Cγ1−γ(J1, E) ⊂
Cµ,ν1−γ(J1, E) under measure of noncompactness technique and a fixed point theorem
of Mönch type.

Definition 3.1. A function z ∈ Cγ1−γ(J1, E) is said to be a solution of HNBVP (1.5)-

(1.6) if z satisfies the fractional differential equation Dµ,ν
a+ z(t) = f(t, z(t)) on J2, and

the nonlocal boundary condition I1−γ
a+

[
cz(a+) + dz(b−)

]
=

m∑
k=1

λkz(τk).

In the beginning, we need the following axiom lemma:

Lemma 3.2. Let 0 < µ < 1, 0 ≤ ν ≤ 1 where γ = µ+ν(1−µ), and f : J2×E → E be a
function such that f(t, z) ∈ C1−γ(J1, E) for any z ∈ C1−γ(J1, E). If z ∈ Cγ1−γ(J1, E),

then z satisfies HNBVP (1.5)-(1.6) if and only if z satisfies the following integral
equation

z(t) =
(t− a)γ−1

Γ(γ)

1

(c+ d−A)

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1f(s, z(s))ds

− (t− a)γ−1

Γ(γ)

d

(c+ d−A)

1

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µf(s, z(s))ds

+
1

Γ(µ)

∫ t

a

(t− s)µ−1f(s, z(s))ds, (3.1)

where A =

m∑
k=1

λk
(τk − a)γ−1

Γ(γ)
, and c+ d 6= A.

Proof. In view of Lemma 2.15, the solution of (1.5) can be written as

z(t) =
I1−γ
a+ z(a+)

Γ(γ)
(t− a)γ−1 +

1

Γ(µ)

∫ t

a

(t− s)µ−1f(s, z(s))ds, t > a. (3.2)

Applying I1−γ
a+ on both sides of (3.2) and taking the limit t→ b−, we obtain

I1−γ
a+ z(b−) = I1−γ

a+ z(a+) +
1

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µf(s, z(s))ds. (3.3)

Now, we substitute t = τk in (3.2) and multiply by λk to obtain

λkz(τk) = λk

[
I1−γ
a+ z(a+)

Γ(γ)
(τk − a)γ−1 +

1

Γ(µ)

∫ τk

a

(τk − s)µ−1f(s, z(s))ds

]
. (3.4)

Using the nonlocal boundary condition (1.6) with (3.3) and (3.4), we have

I1−γ
a+ z(a+) =

1

c

m∑
k=1

λkz(τk)− d

c
I1−γ
a+ z(a+)

+
d

cΓ(1− γ + µ)

∫ b

a

(b− s)−γ+µf(s, z(s))ds.
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Therefore, by (3.4), we have

I1−γ
a+ z(a+) =

1

c

m∑
k=1

λk
I1−γ
a+ z(a+)

Γ(γ)
(τk − a)γ−1

+
1

c

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1f(s, z(s))ds

−d
c
I1−γ
a+ z(a+)− d

c

1

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µf(s, z(s))ds.

=
1

(c+ d−A)

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1f(s, z(s))ds

− d

(c+ d−A)

1

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µf(s, z(s))ds. (3.5)

Submitting (3.5) into (3.2), we obtain

z(t) =
(t− a)γ−1

Γ(γ)

1

(c+ d−A)

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1f(s, z(s))ds

− (t− a)γ−1

Γ(γ)

d

(c+ d−A)

1

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µf(s, z(s))ds

+
1

Γ(µ)

∫ t

a

(t− s)µ−1f(s, z(s))ds. (3.6)

Conversely, applying I1−γ
a+ on both sides of (3.1), then it follows from Lemmas 2.6,

2.7, and some simple computations that

I1−γ
a+

(
cz(a+) + dz(b−)

)
=

c

(c+ d−A)

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1f(s, z(s))ds

− cd

(c+ d−A)

1

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µf(s, z(s))ds

+
d

(c+ d−A)

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1f(s, z(s))ds

− d2

(c+ d−A)

1

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µf(s, z(s))ds

+
d

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µf(s, z(s))ds.
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Which implies

I1−γ
a+

(
cz(a+) + dz(b−)

)
=

(
c

(c+ d−A)
+

d

(c+ d−A)

) m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1f(s, z(s))ds

−
(
d− cd

(c+ d−A)
− d2

(c+ d−A)

)∫ b

a

(b− s)−γ+µ

Γ(1− γ + µ)
f(s, z(s))ds

=
c+ d

(c+ d−A)

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1f(s, z(s))ds

− Ad

(c+ d−A)

1

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µf(s, z(s))ds.

From (3.4) and (3.5), we conclude that

I1−γ
a+

(
cz(a+) + dz(b−)

)
=

m∑
k=1

λkz(τk),

which shows that the nonlocal boundary condition (1.6) is satisfied.
Next, applying Dγ

a+ on both sides of (3.1) and using Lemmas 2.7 and 2.8, we have

Dγ
a+z(t) = D

ν(1−µ)
a+ f

(
t, z(t)

)
. (3.7)

Since z ∈ Cγ1−γ(J1, E) and by definition of Cγ1−γ(J1, E), we have Dγ
a+z ∈ C1−γ(J1, E),

therefore, D
ν(1−µ)
a+ f = DI

1−ν(1−µ)
a+ f ∈ C1−γ(J1, E). For f ∈ C1−γ(J1, E), it is clear

that I
1−ν(1−µ)
a+ f ∈ C1−γ(J1, E). Hence f and I

1−ν(1−µ)
a+ f satisfy the hypothesis of

Lemma 2.9.
Now, by applying I

ν(1−µ)
a+ on both sides of (3.7), we have

I
ν(1−µ)
a+ Dγ

a+z(t) = I
ν(1−µ)
a+ D

ν(1−µ)
a+ f

(
t, z(t)

)
.

Using Remark 2.4 (i), relation (3.7) and Lemma 2.9, we get

Dµ,ν
a+ z(t) = f

(
t, z(t)

)
−
I

1−ν(1−µ)
a+ f

(
a, z(a)

)
Γ(ν(1− µ))

(t− a)ν(1−µ)−1, for all t ∈ J2.

By Lemma 2.10, we have I
1−ν(1−µ)
a+ f

(
a, z(a)

)
= 0. Therefore Dµ,ν

a+ z(t) = f
(
t, z(t)

)
.

This completes the proof.
To prove the existence of solutions for the problem at hand, let us make the following
hypotheses.

(H1) The function f : J2 × E → E satisfies the Carathèodory conditions.

(H2) f : J2 × E → E is a function such that f(·, z(·)) ∈ C
ν(1−µ)
1−γ (J1, E) for any

z ∈ C1−γ(J1, E) and there exists ρ ∈ Lp(J1,R+) with p > 1
µ and p > 1

γ such

that ∥∥f(t, z)∥∥ ≤ ρ(t) ‖z‖ ,
for each t ∈ J2, and all z ∈ E.
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(H3) The following inequalities

G : =

(
1

Γ(γ)

(Λq,µ,γ)
1
q

(c+ d−A)

m∑
k=1

λk
Γ(µ)

(τk − a)γ+µ−1

+
( 1

Γ(γ)

∣∣∣∣ d

(c+ d−A)

∣∣∣∣ (∆q,µ,γ)
1
q

Γ(1− γ + µ)
+

(Λq,µ,γ)
1
q

Γ(µ)

)
(b− a)µ

)
‖ρ‖Lp < 1,

and

L∗ : =

(
m

Γ(γ)

(b− a)γ−1

(c+ d−A)

m∑
k=1

λk(τk − a)µ

Γ(µ+ 1)

+
( 1

Γ(γ)

∣∣∣∣ d

(c+ d−A)

∣∣∣∣ 1

Γ(−γ + µ)
+

1

Γ(µ+ 1)

)
(b− a)µ

)
‖ρ‖Lp < 1

hold, where q > 1, 1
p + 1

q = 1 and

Λq,µ,γ :=
Γ(q(µ− 1) + 1)Γ(q(γ − 1) + 1)

Γ(q(µ+ γ − 2) + 2)
,

∆q,µ,γ :=
Γ(q(µ− γ) + 1)Γ(q(γ − 1) + 1)

Γ(q(µ− 1) + 2)
.

Now, we are ready to prove the existence of solutions for the HNBVP (1.5)-(1.6),
which is based on fixed point theorem of Mönch’s type.

Theorem 3.3. Assume that (H1)-(H3) are satisfied. Then HNBVP (1.5)-(1.6) has at
least one solution in Cγ1−γ(J1, E) ⊂ Cµ,ν1−γ(J1, E).

Proof. Transform the problem (1.5)-(1.6) into a fixed point problem. Define the op-
erator T : C1−γ(J1, E) −→ C1−γ(J1, E) as

T z(t) = z(t) =
(t− a)γ−1

Γ(γ)

1

(c+ d−A)

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1f(s, z(s))ds

− (t− a)γ−1

Γ(γ)

d

(c+ d−A)

1

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µf(s, z(s))ds

+
1

Γ(µ)

∫ t

a

(t− s)µ−1f(s, z(s))ds. (3.8)

Clearly, from Lemma 3.2, the fixed points of T are solutions to (1.5)-(1.6). Let

BR =
{
z ∈ C1−γ(J1, E) : ‖z‖C1−γ

≤ R
}
.

We shall show that T satisfies the conditions of Mönch’s fixed point theorem.
The proof will be given in the following four steps:
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Step 1. We show that T (BR) ⊂ BR. From the hypothesis (H2) and Hölder’s inequality,
we have ∣∣(T z)(t)(t− a)1−γ∣∣

=
1

Γ(γ)

1

(c+ d−A)

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1 |f(s, z(s))| ds

+
1

Γ(γ)

∣∣∣∣ d

(c+ d−A)

∣∣∣∣ 1

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µ |f(s, z(s))| ds

+
(t− a)1−γ

Γ(µ)

∫ t

a

(t− s)µ−1 |f(s, z(s))| ds

≤ 1

Γ(γ)

1

(c+ d−A)

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1(s− a)γ−1ρ(s) ‖z‖C1−γ
ds

+
1

Γ(γ)

∣∣∣∣ d

(c+ d−A)

∣∣∣∣ ∫ b

a

(b− s)−γ+µ

Γ(1− γ + µ)
(s− a)γ−1ρ(s) ‖z‖C1−γ

ds

+
(t− a)1−γ

Γ(µ)

∫ t

a

(t− s)µ−1(s− a)γ−1ρ(s) ‖z‖C1−γ
ds

≤ 1

Γ(γ)

m∑
k=1

λk
Γ(µ)

(∫ τk

a

(τk − s)(µ−1)q

(c+ d−A)
(s− a)(γ−1)qds

) 1
q

‖ρ‖Lp ‖z‖C1−γ

+
1

Γ(γ)

∣∣∣∣ d

(c+ d−A)

∣∣∣∣
(∫ b

a

(b− s)(−γ+µ)q

Γ(1− γ + µ)
(s− a)(γ−1)qds

) 1
q

×‖ρ‖Lp ‖z‖C1−γ
+

(t− a)1−γ

Γ(µ)

×
(∫ t

a

(t− s)(µ−1)q(s− a)(γ−1)qds

) 1
q

‖ρ‖Lp ‖z‖C1−γ
. (3.9)

Since q > 1, p > 1
µ and 1

p + 1
q = 1, the change of variable s = a− u(τk − a) yields(∫ τk

a

(τk − s)(µ−1)q(s− a)(γ−1)qds

) 1
q

≤ (Λq,µ,γ)
1
q (τk − a)γ+µ−1, (3.10)

the change of variable s = a− u(b− a) gives(∫ b

a

(b− s)(−γ+µ)q(s− a)(γ−1)qds

) 1
q

≤ (∆q,µ,γ)
1
q (b− a)µ, (3.11)

and the change of variable s = a− u(t− a) gives us(∫ t

a

(t− s)(µ−1)q(s− a)(γ−1)qds

) 1
q

≤ (Λq,µ,γ)
1
q (t− a)γ+µ−1. (3.12)
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Substitution of (3.10),(3.11) and (3.12) into (3.9) leads∣∣(T z)(t)(t− a)1−γ∣∣
≤ 1

Γ(γ)

1

(c+ d−A)

m∑
k=1

λk
Γ(µ)

(Λq,µ,γ)
1
q (τk − a)γ+µ−1 ‖ρ‖Lp ‖z‖C1−γ

+
1

Γ(γ)

∣∣∣∣ d

(c+ d−A)

∣∣∣∣ 1

Γ(1− γ + µ)
(∆q,µ,γ)

1
q (b− a)µ ‖ρ‖Lp ‖z‖C1−γ

+
(t− a)1−γ

Γ(µ)
(Λq,µ,γ)

1
q (t− a)γ+µ−1 ‖ρ‖Lp ‖z‖C1−γ

.

For any z ∈ BR, we obtain

‖T z‖C1−γ
≤
(

1

Γ(γ)

(Λq,µ,γ)
1
q

(c+ d−A)

m∑
k=1

λk
Γ(µ)

(τk − a)γ+µ−1

+
( 1

Γ(γ)

∣∣∣∣ d

(c+ d−A)

∣∣∣∣ (∆q,µ,γ)
1
q

Γ(1− γ + µ)
+

(Λq,µ,γ)
1
q

Γ(µ)

)
(b− a)µ

)
‖ρ‖Lp R.

By (H3), we have ‖T z‖C1−γ ≤ GR ≤ R, that is, T (BR) ⊂ BR.
Step 2. We shall prove that T is completely continuous.
The operator T is continuous. Let {zn}n∈N is a sequence such that zn → z in BR.
Then for each t ∈ J2, we have∣∣((T zn)(t)− (T z)(t)

)
(t− a)1−γ∣∣

=
1

Γ(γ)

1

(c+ d−A)

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1 |f(s, zn(s))− f(s, z(s))| ds

+
1

Γ(γ)

∣∣∣∣ d

(c+ d−A)

∣∣∣∣ ∫ b

a

(b− s)−γ+µ

Γ(1− γ + µ)
|f(s, zn(s))− f(s, z(s))| dds

+
(t− a)1−γ

Γ(µ)

∫ t

a

(t− s)µ−1 |f(s, zn(s))− f(s, z(s))| dds

≤ 1

Γ(γ)

1

(c+ d−A)

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1(s− a)γ−1ds

×
∥∥f(·, zn(·)

)
− f

(
·, z(·)

)∥∥
C1−γ

+
1

Γ(γ)

∣∣∣∣ d

(c+ d−A)

∣∣∣∣ 1

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µ(s− a)γ−1ds

×
∥∥f(·, zn(·)

)
− f

(
·, z(·)

)∥∥
C1−γ

+
(t− a)1−γ

Γ(µ)

∫ t

a

(t− s)µ−1(s− a)γ−1ds
∥∥f(·, zn(·)

)
− f

(
·, z(·)

)∥∥
C1−γ

.
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Thus,

∣∣((T zn)(t)− (T z)(t)
)
(t− a)1−γ∣∣

≤ 1

(c+ d−A)

B(γ, µ)

Γ(µ)Γ(γ)

m∑
k=1

λk(τk − a)γ−1+µ

Γ(µ)

∥∥f(·, zn(·)
)
− f

(
·, z(·)

)∥∥
C1−γ

+

∣∣∣∣ d

(c+ d−A)

∣∣∣∣ (b− a)µ

Γ(µ+ 1)

∥∥f(·, zn(·)
)
− f

(
·, z(·)

)∥∥
C1−γ

+
(b− a)µ

Γ(µ)

B(γ, µ)

Γ(µ)

∥∥f(·, zn(·)
)
− f

(
·, z(·)

)∥∥
C1−γ

.

By (H1) and the Lebesgue dominated convergence theorem, we have

‖(T zn − T z)‖C1−γ −→ 0 as n −→∞,

which means that operator T is continuous on BR.

Step 3. T (BR) is relatively compact.
From Step 1, we have T (BR) ⊂ BR. It follows that T (BR) is uniformly bounded i.e.
T maps BR into itself. Moreover, we show that operator T is equicontinuous on BR.
Indeed, for any a < t1 < t2 < b and z ∈ BR, we get

∣∣(t2 − a)1−γ(T z)(t2)− (t1 − a)1−γ(T z)(t1)
∣∣

≤ 1

Γ(µ)

∣∣∣∣(t2 − a)1−γ
∫ t2

a

(t2 − s)µ−1f
(
s, z(s)

)
ds

−(t1 − a)1−γ
∫ t1

a

(t1 − s)µ−1f
(
s, z(s)

)
ds

∣∣∣∣
≤
‖f‖C1−γ

Γ(µ)

∣∣∣∣(t2 − a)1−γ
∫ t2

a

(t2 − s)µ−1(s− a)γ−1ds

−(t1 − a)1−γ
∫ t1

a

(t1 − s)µ−1(s− a)γ−1ds

∣∣∣∣
≤ ‖f‖C1−γ

B(γ, µ)

Γ(µ)
|(t2 − a)µ − (t1 − a)µ| ,

which tends to zero as t2 → t1, independent of z ∈ BR, where B(·, ·) is a Beta function.
Thus we conclude that T (BR) is equicontinuous on Br and therefore is relatively
compact. As a consequence of Steps 1 to 3 together with Arzela-Ascoli theorem, we
conclude that T : BR → BR is completely continuous operator.

Step 4. The Mönch condition is satisfied.
Let V be a subset of BR such that V ⊂co (T (V) ∪ {0}) . V is bounded and equicon-
tinuous, and therefore the function t −→ α(V(t)) is continuous on J1. By (H2)-(H3),
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Lemma 2.6, and the properties of the measure α, for each t ∈ J2

α(V(t)) ≤ α(T (V)(t) ∪ {0}) ≤ α(T (V)(t))

≤ 1

Γ(γ)

(t− a)γ−1

(c+ d−A)

m∑
k=1

λk
Γ(µ)

∫ τk

a

(τk − s)µ−1ρ(s)α(V(s))ds

+
1

Γ(γ)

∣∣∣∣d(t− a)γ−1

(c+ d−A)

∣∣∣∣ 1

Γ(1− γ + µ)

∫ b

a

(b− s)−γ+µρ(s)α(V(s))ds

+
1

Γ(µ)

∫ t

a

(t− s)µ−1ρ(s)α(V(s))ds

≤ 1

Γ(γ)

(b− a)γ−1

(c+ d−A)

m∑
k=1

λk
Γ(µ)

(∫ τk

a

(τk − s)(µ−1)qds

) 1
q

‖ρ‖Lp mα(V(b))

+
1

Γ(γ)

∣∣∣∣d(b− a)γ−1

(c+ d−A)

∣∣∣∣ 1

Γ(1− γ + µ)

(∫ b

a

(b− s)(−γ+µ)qds

) 1
q

×‖ρ‖Lp α(V(b)) +
1

Γ(µ)

(∫ t

a

(t− s)(µ−1)qds

) 1
q

‖ρ‖Lp α(V(b)).

From the facts
1

q
< 1 =⇒ 1

(µ− 1)q + 1
<

1

µ
, 1− µ 6= 1

q
,

and
1

q
< 1 =⇒ 1

(−γ + µ)q + 1
<

1

−γ + µ+ 1
, γ − µ 6= 1

q
,

we get

α(V(t)) ≤
(

m

Γ(γ)

(b− a)γ−1

(c+ d−A)

m∑
k=1

λk(τk − a)µ

Γ(µ+ 1)

+
1

Γ(γ)

∣∣∣∣ d

(c+ d−A)

∣∣∣∣ (b− a)µ

Γ(−γ + µ)
+

(t− a)µ

Γ(µ+ 1)

)
‖ρ‖Lp α(V(b)).

It follows that

‖α(V)‖L∞ (1− L∗) ≤ 0.

This means ‖α(V)‖L∞ = 0, i.e. α(V(t)) = 0 for all t ∈ J2. Thus V(t) is relatively
compact in E. In view of Arzela-Ascoli theorem, V is relatively compact in BR. An
application of Lemma 2.13 shows that T has a fixed point which is a solution of
HNBVP (1.5)-(1.6).
Finally, we show that such a solution is indeed in Cγ1−γ(J1, E). We apply Dγ

a+ on both

sides of (3.8), and using Lemmas 2.7, 2.8, to get

Dγ
a+z(t) = Dγ

a+I
µ
a+f(t, z(t)) = D

ν(1−µ)
a+ f(t, z(t)).

Since f(·, z(·)) ∈ Cν(1−µ)
1−γ (J1, E), it follows by definition of the space C

ν(1−µ)
1−γ (J1, E)

that Dγ
a+z(t) ∈ C1−γ(J1, E) which implies that z(t) ∈ Cγ1−γ(J1, E). The proof is

complete. �
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4. An example

We consider the Hilfer fractional differential equation with nonlocal boundary
condition {

Dµ,ν
0+ z(t) = f

(
t, z(t)

)
, t ∈ (0, 1], 0 < µ < 1, 0 ≤ ν ≤ 1,

I1−γ
0+

[
1
4z(0

+) + 3
4z(1

−)
]

= 2
5z(

2
3 ), µ ≤ γ = µ+ ν(1− µ),

(4.1)

where f
(
t, z(t)

)
= 1

16 t sin |z(t)| , µ = 1
3 , ν = 1

4 , γ = 1
2 , c = 1

4 , d = 3
4 , λ1 = 2

5 and

m = 1, τ1 = 2
3 . Let E = R+ and J2 = (0, 1].

Clearly we can see that

√
tf
(
t, z
)

=
1

16
3
√
t sin z ∈ C([0, 1],R+),

and hence f
(
t, z
)
∈ C 1

2
([0, 1],R+). Also, observe that, for t ∈ (0, 1] and for any

z ∈ C 1
2
([0, 1],R+), ∥∥f(t, z)∥∥ ≤ 1

16
t ‖z‖ .

Therefore, the conditions (H1) and (H2) is satisfied with ρ(t) = 1
16 t ∈ L

p(0, 1). Select
p = 4, we have

‖ρ‖L4 =

(∫ 1

0

∣∣∣∣ 1

16
s

∣∣∣∣4 ds
) 1

4

=
327 680

3
4

327 680
.

It is easy to check that conditions in (H3) are satisfied too. Indeed, by some simple
computations with q = 4

3 , we get

Λq,µ,γ =
Γ(q(µ− 1) + 1)Γ(q(γ − 1) + 1)

Γ(q(µ+ γ − 2) + 2)
=

Γ( 1
9 )Γ( 1

3 )

Γ( 4
9 )

,

and

∆q,µ,γ =
Γ(q(µ− γ) + 1)Γ(q(γ − 1) + 1)

Γ(q(µ− 1) + 2)
=

Γ( 7
9 )Γ( 1

3 )

Γ( 10
9 )

,

also, we have

A = λ1
(τ1)γ−1

Γ(γ)
=

√
6
π

5
.

It follows that G ' 0.35 < 1, and L∗ ' 0.06 < 1, (m = 1). An application of Theorem

3.3 implies that problem (4.1) has a solution in C
1
2
1
2

([0, 1],R+).
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