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Abstract. In this paper, we consider a mixed problem for a nonlinear elasticity
system with laws of general behavior. The coefficients of elasticity depends on
x meanwhile the density of the volumetric forces depends on the displacement.
The main aim of this paper is to apply the Schauder’s fixed point theorem and
the techniques of topological degree to prove a theorem of the existence and the
uniqueness of the solution of the corresponding variational problem.
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1. Introduction

This work consists in solving the mixed problem for the nonlinear elasticity
system, by means of two methods, namely, the theorem of Schauder and the techniques
of the topological degree [7].

First, we introduce the following notations needed in this paper. Let Ω be a
connected open bounded domain of RN , (N = 3) with Lipschitz boundary Γ. Let Γ0

a part of Γ of strictly positive superficial measure, and let Γ1 be the complement of
Γ0 in Γ. For a given field of displacement u, we associate a linearized displacement
tensor ε (u) defined by

ε (∇u(x)) =
1

2

(
∇Tu+∇u

)
,

whose components are

εij (u(x)) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, 1 ≤ i, j ≤ 3. (1.1)
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The corresponding constraints tensor σ(u) is given by

σij(u(x)) =

3∑
k,h=1

aijkh(x)εkh(u(x)), 1 ≤ i, j ≤ 3. (1.2)

Equation (1.2) describes a linear relation between the stress tensor {σij} and the
deformation tensor {εij}. The elasticity coefficients aijkh satisfy the following prop-
erties:

1. Properties of symmetry:

aijkh = ajikh = aijhk, ∀1 ≤ i, j, k, h ≤ 3; (1.3)

2. Property of ellipticity:

∃α > 0, ∀{ξij} ∈ RN2

,

3∑
k,h=1

aijkhξijξkh ≥ α
3∑

i,j=1

ξ2
ij . (1.4)

2. Position of problem

We consider a fundamental example of a nonlinear elliptic problem derived from
the Mechanics of Solids, namely, the nonlinear elasticity system. Let f be such that
f(x, u(x)) = (f1(x, u(x)), f2(x, u(x)), f3(x, u(x))) of (L2(Ω))3 and g = (g1, g2, g3) of
(L2(Γ1))3, the problem is to find a function u = (u1, u2, u3) solution of the nonlinear
elliptic problem:

−
3∑

j=1

∂

∂xj
σij (u) = fi(x, u) in Ω; ∀ 1 ≤ i ≤ 3; (2.1)

ui = 0 on Γ0; ∀ 1 ≤ i ≤ 3; (2.2)

3∑
j=1

σij (u) ηj = gi on Γ1; ∀ 1 ≤ i ≤ 3. (2.3)

Equations (2.1), (2.2) and (2.3) describe the small displacements u from the natural
state of a non-homogeneous elastic solid subjected to a volume density of forces f in
Ω, and to a superficial density of forces g on Γ1, the displacements u being fixed by
zero on Γ0, i.e., γu |Γ0

= 0.
Several authors studied the system of elasticity with laws of particular behavior and
using various techniques for example in [1], Ciarlet used the implicit function theorem
to show the existence and uniqueness of a solution. Dautry-Lions [2], studied the linear
problem in a regular boundary domain. Later on, Merouani in [6], [4], [5], studied the
Lamé (elasticity) system in a polygonal boundary domain.

The bibliography quoted here does not claim to be exhaustive and the deficiency
must be attributed to the author’s ignorance and not to the author’s ill will.

The tensor of the constraints considered here is linear and grouped, as special
cases, some models used in Ciarlet [1], Lions [3] and Dautry-Lions [2]. Let us cite by
the way the examples:
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1. The problem of pure displacement for a homogeneous or heterogeneous material
of St Vennan-Kirchhoff where:
- The applied volumetric forces f are dead (does not depend on u),
- The tensor of stress is in the form (material of St Vennan-Kirchhoff ) where{

σij(u(x)) = λ(trEij(∇u(x))) + 2µEij(∇u(x)),
1 ≤ i, j ≤ 3, λ > 0, µ > 0.

2. The coefficients of elasticity have the form:

aijpq = λδijδpq + µ(δipδjq + δiqδjp), 1 ≤ i, j, p, q ≤ 3

with, λ and µ depend on x or not.
3. The applied volumetric forces f have the form

f(ξ) = |ξ|p−1
ξ, 1 < p <∞.

The material is not homogeneous, we assume that the functions aijkh belong to
L∞ (Ω), 1 ≤ i, j, k, h ≤ N and the elliptic property is uniform, there exist a con-
stant α > 0, independent of x, such that (1.4) is verified almost everywhere on Ω.

3. Weak formulation

We suppose that the solution u of (2.1)− (2.3) exists and belongs to
(
H2(Ω)

)3
.

Multiply the equation (2.1) by v ∈ V, and integrate on Ω, we obtain:

−
∫
Ω

3∑
j=1

∂

∂xj
σij (u) vi (x) dx =

∫
Ω

fi (x, u(x)) vi (x) dx,

where

V =
{
v ∈

(
H1(Ω)

)3
; v = 0 in Γ0

}
,

is a closed vector subspace of
(
H1(Ω)

)3
, equipped with the norm ‖.‖V = ‖.‖(H1(Ω))3 .

By Green’s formula, we have∫
Ω

3∑
i,j=1

σij (u)
∂vi
∂xj

dx−
∫
Γ

3∑
i,j=1

σij (u) ηjvidΓ =
3∑

i=1

∫
Ω

fi (x, u(x)) vi(x)dx,

which implies∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh (x) εkh(u)εij(v)dx =

∫
Ω

f (x, u(x)) v (x) dx

+

∫
Γ1

g (x) v (x) dΓ, ∀v ∈ V.
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4. Existence theorem

4.1. Existence with Schauder’s theorem

Let us first recall the notion of Caratheodory function.

Definition 4.1. (Function of Caratheodory): Let N , p, q ∈ N∗ and Ω an open set of
RN . Let a be an application of Ω×Rp to Rq. We say that a is a Caratheodory function
if a( ; s) is a Borel function for all s of Rp and a(x; ) is continuous for almost all x
of Ω.

In this section, we need the following assumptions:
Ω is a connected open bounded domain of RN ,
with Lipschitz boundary Γ;
∃α > 0 and β > 0 such as α ≤ aijkh(s) ≤ β a.e. for all s ∈ R;

f ∈ (L∞(Ω× R))
3

;
εij is a continuous function,∀1 6 i, j 6 3.

(4.1)

Under the assumptions (4.1), we try to show the existence of u, the solution of the
following nonlinear problem:

u ∈ V∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(u(x))εij(v(x))dx

=

∫
Ω

f(x, u(x))v(x)dx+

∫
Γ1

g (x) v (x) dΓ, ∀v ∈ V

(P)

Theorem 4.2. Under the assumptions (4.1), there exist a solution u of the problem
(P ).

Proof. For u ∈
(
L2(Ω)

)3
, we have the existence and the uniqueness of the solution u

of the following problem:

u ∈ V∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(u(x))εij(v(x))dx

=

∫
Ω

f(x, u(x))v(x)dx+

∫
Γ1

g (x) v (x) dΓ, ∀v ∈ V.

(P1)

More precisely, to show the existence and uniqueness of u, the solution of (P1), we
apply the Lax-Milgram Lemma [1]. Let T (u) = u, where T is an application of E in
E with

E =
(
L2(Ω)

)3
.

A fixed point of T is a solution of the problem (P ). To prove the existence of such
a fixed point, we apply the Schauder’s fixed point theorem. First, we will show that
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the image of T lies in a bounded of V . Using α cited in hypothesis (4.1), we have

α

∫
Ω

3∑
i,j=1

3∑
k,h=1

εkh(u(x))εij(v(x))dx

≤
∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(u(x))εij(v(x))dx

=

∫
Ω

f(x, u(x))v(x)dx+

∫
Γ1

g (x) v (x) dΓ.

(4.2)

Taking v = u in (4.2), and using Korn’s inequality [8], we obtain

αC ‖u‖2(H1(Ω))3 ≤
∫
Ω

f(x, u(x))u(x)dx+

∫
Γ1

g (x)u (x) dΓ.

By Cauchy-Schwartz inequality, the bound L∞ of f and the trace theorem, we get,

αC ‖u‖2(H1(Ω))3 ≤ C1 ‖u‖(L2(Ω))3 + ‖g‖(L2(Γ1))3 ‖u‖(L2(Γ1))3

αC ‖u‖2(H1(Ω))3 ≤ C1 ‖u‖(H1(Ω))3 + C2C3 ‖u‖(H1(Ω))3 ,

which implies

‖u‖V = ‖u‖(H1(Ω))3 ≤
C1+C2C3

αC
= R,

thus

‖u‖(L2(Ω))3 ≤ R,

so

u ∈ BR =
{
u ∈

(
L2(Ω)

)3
/ ‖u‖(L2(Ω))3 ≤ R

}
.

And as a result, the image of T is in a bounded of V ⊂
(
H1 (Ω)

)3
. By Rellich’s theorem

the image of T is in a compact of
(
L2(Ω)

)3
. Taking R large enough, therefore, the

application T sends BR in BR and {T (u), u ∈ BR} is relatively compact in
(
L2(Ω)

)3
.

To apply Schauder’s fixed point theorem, it remains to show the continuity of T . Let

(un)n∈N a sequence of
(
L2(Ω)

)3
such as un → u in

(
L2(Ω)

)3
, when n→ +∞. Letting

un = T (un). After extracting a subsequence, we can assume that un → u a.e., and
that there exist w ∈ V such that un → w weakly in V and so un → w strongly in(
L2(Ω)

)3
). Now, we will show that w is the solution of the problem (P1). Indeed, let

v ∈ V , we have∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(un(x))εij(v(x))dx =

∫
Ω

f(x, un)v(x)dx

+

∫
Γ1

g (x) v (x) dΓ, ∀v ∈ V
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Passing to the limit when n → +∞ (using Dominated Convergence Theorem), we
will have ∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(w)εij(v(x))dx =

∫
Ω

f(x, u(x))v(x)dx

+

∫
Γ1

g (x) v (x) dΓ, ∀v ∈ V.

This proves that w = T (u) = u. We have thus proved, after extraction of a sub-

sequence, that T (un) → T (u) in
(
L2(Ω)

)3
. By the absurd one can show that this

convergence remains true without extraction of subsequence. Thus, we have proved
the continuity of T . Therefore, we can apply the Schauder’s fixed point theorem and
to conclude that there is a fixed point of T , which ends the proof. �

4.2. Existence by topological degree

We take again the same previous problem:

u ∈ V∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(u(x))εij(v(x))dx

=

∫
Ω

f(x, u(x))v(x)dx+

∫
Γ1

g (x) v (x) dΓ, ∀v ∈ V

(P)

which is the weak formulation of the problem (2.1)-(2.3).
The following assumptions are made.

(i) Ω is a connected open bounded domain of RN ,

with Lipchitez boundary Γ,

(ii) εij is a continuous function ∀1 6 i, j 6 3,

(iii) ∃α andβ > 0; such thatα ≤ aijkh(x) ≤ β a.e. on Ω,

(iv) f is a Carathéodory function, and ∃C2 ≥ 0 and d ∈ (L2(Ω))3;

|f(x, s)| ≤ d(x) + C2 |s| ,

(v) lim
s→∞

f(x, s)

s
= 0.

(4.3)

Theorem 4.3. Under the assumptions (4.3), there exist a solution of the problem (P ).
In addition, if f does not depend to u, then the solution is unique.

Proof. The method of the topological degree requires a priory estimates, i.e., the
estimates on u, without knowing its existence. We therefore suppose that u is a
solution of (P ). The great advantage of considering (P ) rather than (P1) is to have
only u, not u and u, and this greatly simplifies the estimates.
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We rewrite the problem (P ) under the following form:
u ∈ V∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(u(x))εij(v(x))dx = 〈F (u), v〉V ′,V

where F (u) is, for u ∈
(
L2(Ω)

)3
, the element of V ′ defined by

〈F (u), v〉V ′,V =

∫
Ω

f(x, u(x))v(x)dx+

∫
Γ1

g (x) v (x) dΓ.

According to the hypothesis (iv), the Cauchy-Schwartz inequality and the trace theo-
rem, we have

|〈F (u), v〉| ≤
∫
Ω

|f(x, u(x))| . |v(x)| dx+

∫
Γ1

|g (x)| . |v (x)| dΓ

≤
∫
Ω

|d(x) + C2 |u|| . |v| dx+

∫
Γ1

|g (x)| . |v (x)| dΓ

≤
∫
Ω

|d(x)| . |v| dx+ C2

∫
Ω

|u| |v| dx+

∫
Γ1

|g (x)| |v (x)| dΓ

≤ ‖d‖L2(Ω)3 ‖v‖L2(Ω)3 + C2 ‖u‖L2(Ω)3 ‖v‖L2(Ω)3 + ‖g‖L2(Γ1)3 ‖v‖L2(Γ1)3

≤ ‖d‖(L2(Ω))3 ‖v‖(H1(Ω))3 + C2 ‖u‖(L2(Ω))3 ‖v‖(H1(Ω))3 + C0C ‖v‖(H1(Ω))3

≤
[
‖d‖(L2(Ω))3 + C2R+ CC0

]
‖v‖V .

Then

‖F (u)‖V ′ ≤ ‖d‖(L2(Ω))3 + C2R+ CC0. (4.4)

We deduce that F (u) is an element of V ′, for any u ∈ (L2(Ω))3.
We will show that

F :
(
L2(Ω)

)3 → V ′

u 7−→ F (u)

is continuous. For this, we need the Lebesgue Dominated Convergence Theorem.

Let u, ũ ∈
(
L2(Ω)

)3
; we have

〈F (u), v〉 =

∫
Ω

f(x, u(x))v(x)dx+

∫
Γ1

g (x) v (x) dΓ

〈F (ũ), v〉 =

∫
Ω

f(x, ũ(x))v(x)dx+

∫
Γ1

g (x) v (x) dΓ,
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so

‖F (u)− F (ũ)‖V ′ = sup
v∈V
‖v‖=1

〈F (u)− F (ũ), v〉V ′,V

= sup
v∈V
‖v‖=1

∫
Ω

(f(u)− f(ũ)) .vdx


≤ sup

v∈V
‖v‖=1

[
‖f(u)− f(ũ)‖(L2(Ω))3 . ‖v‖(L2(Ω))3

]
≤ sup

v∈V
‖v‖=1

[
‖f(u)− f(ũ)‖(L2(Ω))3 ‖v‖V

]
≤ ‖f(u)− f(ũ)‖(L2(Ω))3 .

So, if (un)n∈N is a sequence of (L2(Ω))3 such that un → ũ in (L2(Ω))3, we have

‖F (un)− F (ũ)‖V ′ ≤ ‖f(un)− f(ũ)‖(L2(Ω))3 .

So, ∃ (un) subsequence such that

un → ũ(x) almost everywhere in Ω

and ∃H ∈ (L2(Ω))3 such that

|un| ≤ Halmost everywhere in Ω.

Then, we notice that f(un) → f(ũ) because f is continuous a.e. in Ω. According to
the hypothesis (iv), |f(un)| ≤ d(x) + C2 |un|, and as |un| ≤ H we find

|f(un)| ≤ d(x) + C2.H almost everywhere in Ω.

So, by the Lebesgue Dominated Convergence Theorem , we obtain

‖f(un)− f(ũ)‖(L2(Ω))3 → 0 when n→∞

and consequently,

‖F (un)− F (ũ)‖V ′ → 0 whenn→∞

hence the continuity of F . For S ∈ V ′, the linear problem
w ∈ V∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(w(x))εij(v(x))dx = 〈S, v〉V ′,V ,
(4.5)

admits a unique solution w ∈ V (see [1]). We denote by Bu the operator which to S in
V ′ associates w solution of (4.5). The operator Bu is linear continuous from V ′ into V

and V is injected compactly into
(
L2(Ω)

)3
(because the boundary Γ is lipschitzian).

We deduce that the operator Bu is compact from V ′ in
(
L2(Ω)

)3
. The problem (P )
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is equivalent to solving the fixed point problem u = Bu(F (u)). We will show, using
the topological degree techniques, that the following problem admits a solution{

u ∈
(
L2(Ω)

)3
,

u = Bu(F (u)).

For t ∈ [0, 1], we put the application h such that:

h : [0, 1]×
(
L2(Ω)

)3 → (
L2(Ω)

)3
(t, u) 7−→ h(t, u) = Bu(tF (u))

For R > 0, we put BR =
{
u ∈

(
L2(Ω)

)3
such that ‖u‖(L2(Ω))3 < R

}
. We will show

(1)− ∃R > 0;

{
u− h(t, u) = 0

t ∈ [0, 1] , u ∈
(
L2(Ω)

)3 } =⇒ ‖u‖(L2(Ω))3 < R;

(2)− h is continuous from [0, 1]×BR into BR;

(3)−
{
h(t, u), t ∈ [0, 1] , u ∈ BR

}
is relatively compact in

(
L2(Ω)

)3
.

If we suppose that we have proved the statements (1), (2) and (3), we have no solution
to the equation u−h(t, u) = 0 on the boundary of the ball BR, and we can thus define
the degree d(Id− h(t, .), BR, 0). This degree does not depend of t, so we have

d(Id − h(t, .), BR, 0) = d(Id− h(0, .), BR, 0)

= d(Id,BR, 0) = 1.

We deduce the existence of u ∈ BR such that u− h(1, u) = 0, that is to say

u = Bu(F (u)).

Thus u is solution of (P ). Now, it remains to show the statements (1), (2) and (3).
Let us begin with the proof of (3) (for every R > 0). We suppose ‖u‖(L2(Ω))3 ≤ R.

We have

F (u) ∈ V ′, and 〈F (u), v〉V ′,V =

∫
Ω

f(x, u(x))v(x)dx+

∫
Γ1

g (x) v (x) dΓ.

We have

‖F (u)‖V ′ ≤ ‖d‖(L2(Ω))3 + C2R+ CC0.

So

t ‖F (u)‖V ′ ≤ ‖d‖(L2(Ω))3 + C2R+ CC0 = R̃, ∀t ∈ [0, 1]

We put h(t, u) = Bu(tF (u)) = w and show that there exists R depending only of R,
C0, C, C2, and α such that

‖h(t, u)‖V ≤ R⇐⇒ ‖w‖V ≤ R
By definition, w is solution of

w ∈ V∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(w(x))εij(v(x))dx

= 〈tF (u), v〉V ′,V , ∀v ∈ V

(4.6)
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Taking v = w in (4.6), by Korn’s inequality, we obtain,

αk ‖w‖2(H1(Ω))3 ≤ ‖tF (u)‖V ′ ‖w‖V

⇐⇒ αk ‖w‖2(H1(Ω))3 ≤ ‖tF (u)‖V ′ ‖w‖V ≤ R̃ ‖w‖V
which implies:

‖h(t, u)‖V = ‖w‖V ≤ R
with

R =
R̃

αk
=
‖d‖(L2(Ω))3 + C2R+ CC0

αk
.

From Rellich’s Theorem, we deduce that the set
{
h(t, u), t ∈ [0, 1] , u ∈ BR

}
is rela-

tively compact in
(
L2(Ω)

)3
, which shows (3). Let us show now the point (2). Let

(tn)n∈N ⊂ [0, 1] such that tn → t when n → +∞ and (un)n∈N ⊂
(
L2(Ω)

)3
with

un → u in
(
L2(Ω)

)3
. We want to show that h(tn, un) → h(t, u) in

(
L2(Ω)

)3
. Let

wn = h(tn, un) and w = h(t, u). To show that wn → w in
(
L2(Ω)

)3
. We take the limit

on the following problem,

wn ∈ V∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(wn)εij(v)dx

= tn

∫
Ω

f(un)v (x) dx+ tn

∫
Γ1

g (x) v (x) dΓ

(4.7)

We already know that (wn)n∈N is bounded in V, because the sequence (un)n∈N is

bounded in
(
L2(Ω)

)3
(this is what was shown in the previous step: if ‖un‖(L2(Ω))3 ≤ R

then ‖wn‖V ≤ R). The sequence (wn)n∈N is bounded in V, and to a subsequence, we
have

wn → w in V weakly and wn → w in
(
L2(Ω)

)3
,

un → u a.e. and ∃H ∈
(
L2(Ω)

)3
; |un| ≤ H a.e..

Since wn → w in
(
L2(Ω)

)3
, then there exist a subsequence denoted again wn such

that

wn → w a.e. and ∃K ∈
(
L2(Ω)

)3
; |wn| ≤ K a.e.

Let v ∈ V and as εkh is continuous then εkh(wn)→ εkh(w) a.e. and so

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(wn)εij(v)→
3∑

i,j=1

3∑
k,h=1

aijkh(x)εkh(w)εij(v) a.e.

we have also∣∣∣∣∣∣
3∑

i,j=1

3∑
k,h=1

aijkh(x)εkh(wn)εij(v)

∣∣∣∣∣∣ ≤ β
3∑

k,h=1

|εkh(wn)|
3∑

i,j=1

|εij(v)| ∈ L1 (Ω) ,
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by Dominated Convergence Theorem, we have∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(wn)εij(v)dx→
∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(w)εij(v)dx, n→ +∞.

As f(un)→ f(u) a.e. and |f(un)| ≤ |d|+ C2 |H|.
By the Lebesgue Dominated Convergence Theorem we have f(un)→ f(u) in

(
L2(Ω)

)3
and consequently ∫

Ω

f(un)vdx→
∫
Ω

f(u)vdx

when n→ +∞. Passing to the limit in (4.7), we obtain,∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(w)εij(v)dx = t

∫
Ω

f(u)vdx+ t

∫
Γ1

g (x) v (x) dΓ,

and so w = h(t, u) = w. By the absurd argument, we show that wn → w in V weakly

and wn → w in
(
L2(Ω)

)3
, where wn = h(tn, un) and w = h(t, u); the application h is

continuous and consequently (2) holds. It remains now to demonstrate (1). We want
to show that:

∃R > 0;

{
u− h(t, u) = 0

t ∈ [0, 1] , u ∈
(
L2(Ω)

)3 } =⇒ ‖u‖(L2(Ω))3 < R.

Let t ∈ [0, 1] and u = h(t, u) = tBu(F (u)), that is to say

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)εkh(u)εij(v)dx

t =

∫
Ω

f(u)vdx+ t

∫
Γ1

g (x) v (x) dΓ, ∀v ∈ V

u ∈ V

(4.8)

We choose v = u in (4.8). By the hypotheses (4.3), and Korn’s inequality, we have

αk ‖u‖2(H1(Ω))3 ≤
∫
Ω

|f(u)u| dx+

∫
Γ1

|g (x)| |u (x)| dΓ.

We are going to deduce from this inequality the existence of R > 0 such that

‖u‖(L2(Ω))3 < R.

Here, we use the hypothesis (v), i.e.,

lim
s→±∞

f(x, s)

s
= 0.

We argue by the absurd. Let us suppose that a such R does not exist. Then there
exist a sequence (un)n∈N∗ of elements of V such that

‖un‖(L2(Ω))3 ≥ n and αk ‖un‖2(H1(Ω))3 ≤
∫
Ω

|f(un)un| dx+

∫
Γ1

|g (x)| |un (x)| dΓ.
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Let us show that this is impossible. Letting vn =
un
‖un‖V

. We have ‖vn‖V = 1 and

αk ‖vn‖2(H1(Ω))3 ≤
∫
Ω

∣∣∣∣∣ f(un)

‖un‖(H1(Ω))3
vn

∣∣∣∣∣ dx+

∫
Γ1

∣∣∣∣∣ g(x)

‖un‖(H1(Ω))3
vn

∣∣∣∣∣ dΓ.

Or, according to hypothesis (iv) i.e., |f(x, s)| ≤ d(x) + C2 |s| and the trace theorem
we have

αk ‖vn‖2(H1(Ω))3 ≤
∫
Ω

|d|+ C2 |un|
‖un‖(H1(Ω))3

|vn| dx+
‖g(x)‖(L2(Γ1))3 ‖vn‖(L2(Γ1))3

‖un‖(H1(Ω))3

≤
∫
Ω

|d| |vn|
‖un‖(H1(Ω))3

dx+ C2

∫
Ω

|vn|2 dx+
‖g(x)‖(L2(Γ1))3 C ‖vn‖(H1(Ω))3

‖un‖(H1(Ω))3

≤
‖d‖(L2(Ω))3 ‖vn‖(L2(Ω))3

‖un‖(H1(Ω))3
+ C2 ‖vn‖2(L2(Ω))3 +

C0C

‖un‖(H1(Ω))3

≤
‖d‖(L2(Ω))3 ‖vn‖(L2(Ω))3

‖un‖(L2(Ω))3
+ C2 ‖vn‖2(H1(Ω))3 +

C0C

‖un‖(L2(Ω))3

≤ ‖d‖(L2(Ω))3 ‖vn‖(L2(Ω))3 + C2 + C0C

≤ ‖d‖(L2(Ω))3 + C2 + C0C,

which implies

‖vn‖2V ≤
‖d‖(L2(Ω))3 + C2 + C0C

αk
,

so, (vn)n∈N∗ is bounded in V, and hence there exist a subsequence, vn → v in (L2(Ω))3.
We also have

vn → v a.e. on Ω,

|vn| ≤ H with H ∈
(
L2(Ω)

)3
.

As ‖vn‖V = 1, we have

αk ≤
∫
Ω

∣∣∣∣∣ f(un)

‖un‖(H1(Ω))3
vn

∣∣∣∣∣ dx+

∫
Γ1

∣∣∣∣∣ g(x)

‖un‖(H1(Ω))3
vn

∣∣∣∣∣ dΓ.

Letting

Xn =

∫
Ω

∣∣∣∣∣ f(un)

‖un‖(H1(Ω))3
vn

∣∣∣∣∣ dx+

∫
Γ1

∣∣∣∣∣ g(x)

‖un‖(H1(Ω))3
vn

∣∣∣∣∣ dΓ.

Now, we show that Xn → 0 when n→ +∞, which is impossible since Xn is reduced
by the constant αk which is strictly positive.
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• Let us show that
|f(un)| |vn|
‖un‖(H1(Ω))3

→ 0 a.e. with domination, we shall have then

by the Dominated Convergence Theorem that

∫
Ω

∣∣∣∣∣ f(un)

‖un‖(H1(Ω))3
vn

∣∣∣∣∣ dx→ 0 when

n→ +∞.
We show first of all the domination. We have

|f(un)|
‖un‖(H1(Ω))3

≤ |d|+ C2 |un|
‖un‖(H1(Ω)3

≤ |d|
‖un‖(H1(Ω)3

+ C2 |vn|

≤ |d|
‖un‖(L2(Ω))3

+ C2 |vn|

≤ |d|+ C2H

so ∣∣∣∣∣ f(un)

‖un‖(H1(Ω))3
vn

∣∣∣∣∣ ≤ (|d|+ C2H)H ∈
(
L1 (Ω)

)3
.

Now, we show that the convergence is almost everywhere. We have vn → v a.e. so
∃A; mes(Ac) = 0 and vn(x)→ v(x)∀x ∈ A.
Case 1. If v(x) > 0; vn(x)→ v(x), but

lim
n→+∞

‖un‖(L2(Ω))3 = +∞

so

un(x) = vn(x) ‖un‖V → +∞.
f(un(x))

‖un‖(H1(Ω))3
vn(x) =

f(un(x))un(x)

un(x) ‖un‖(H1(Ω))3
vn(x) =

f(un(x))

un(x)
(vn(x))

2 → 0, n→ +∞.

We used here lim
s→+∞

f(s)/s = 0.

Case 2. If v(x) < 0; we have the same

lim
n→+∞

f(un(x))

‖un‖(H1(Ω))3
vn(x) = 0

because

lim
s→−∞

f(s)/s = 0.

Case 3. If v(x) = 0;∣∣∣∣∣ f(un(x))

‖un‖(H1(Ω))3
vn(x)

∣∣∣∣∣ ≤ |d(x)|+ C2 |un(x)|
‖un‖(H1(Ω))3

|vn(x)|

≤ (|d(x)|+ C2 |vn(x)|) |vn(x)|
→ 0 because v(x) = 0.

In summary, we have
f(un)

‖un‖(H1(Ω))3
vn → 0
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a.e. on Ω. It has been shown that

lim
n→+∞

∫
Ω

∣∣∣∣∣ f(un)

‖un‖(H1(Ω))3
vn

∣∣∣∣∣ dx = 0.

• Let us now show that the term

∫
Γ1

∣∣∣∣∣ g(x)

‖un‖(H1(Ω))3
vn

∣∣∣∣∣→ 0 as n→ +∞.

We have

0 ≤
∫

Γ1

|g(x)| |vn|
‖un‖(H1(Ω))3

dΓ ≤
‖g(x)‖(L2(Γ1))3 ‖vn‖(L2(Γ1))3

‖un‖(H1(Ω))3

≤
C0C ‖vn‖(H1(Ω))3

‖un‖(H1(Ω))3

≤ C0C

‖un‖(L2(Ω))3
→ 0 when n→ +∞.

Because we have ‖un‖(L2(Ω))3 → +∞ when n→ +∞. It has been shown that

lim
n→+∞

∫
Γ1

|g(x)| |vn|
‖un‖(H1(Ω))3

dΓ = 0.

So lim
n→+∞

Xn = 0, which is a contradiction with Xn ≥ αk for all n ∈ N∗. Thus, we

have showed that there is R > 0 such as: (u = h(t, u)) =⇒ ‖u‖(L2(Ω))3 < R. This

proves (1). Then the existence of solution to (P ) is proved.
Uniqueness. We suppose that f does not depend to u. Let u1 and u2 be two solutions
of this problem: ∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh (x) εkh(ui)εij(v)dx

=

∫
Ω

f (x) v (x) dx+

∫
Γ1

g (x) v (x) dΓ, i = 1, 2;∀v ∈ V.

Subtracting term to term and substituting v by u1 − u2, we obtain,∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh (x) (εkh(u1 − u2))εij(u1 − u2)dx = 0,

by Korn’s inequality, and the hypothesis (iii), we have

α ‖u1 − u2‖2(H1(Ω))3 ≤ 0,

so, u1 = u2. This completes the proof of Theorem 4.3. �
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5. Conclusion

In this work, we have studied the existence and the uniqueness of solutions of
the mixed problem for a nonlinear elasticity system in a regular and bounded domain
by using Schauder’s fixed point theorem and the technique of topological degree. Next
future work, we will concentrate on the same problem but with ε is nonlinear, and we
will also prove a theorem of existence and uniqueness of solutions in Sobolev spaces
with variable exponents.
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let boundary-value problems of Lamé systems, Electron. J. Differential Equations,
2015(2015), no. 181, 1-6.
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