Finite difference scheme for a high order nonlinear Schrödinger equation with localized damping

Marcelo M. Cavalcanti, Wellington J. Corrêa., Mauricio Sepúlveda C., Rodrigo Véjar Asem

Abstract


In this work we present a finite difference scheme used to solve
a High order Nonlinear Schrödinger Equation with localized damping.
These equations can model the propagation of solitons travelling in fiber
optics ([3], [10]). The scheme is designed to preserve the numerical en-
ergy at L 2 level, and control the energy at H 1 level for a suitable choose
on the equation’s parameters, and when there is no damping in effect.
Numerical results will be shown.

Keywords


HNLS; Soliton Theory; Localized damping; Finite Difference Methods.

Full Text:

PDF

References


M. J. Ablowitz, H. Segur. Solitons and the Inverse Scattering Transform.

SIAM, 1981.

M. Alves, M. Sepúlveda, O. Vera. Smoothing properties for the higher-order nonlinear Schrödinger equation with constant coefficients. Nonlinear Anal., 71 (2009), 948-966.

D. Anderson, M. Lisak. Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A, 27 (1983), No. 3, 1393-1398.

X. Carvajal: Sharp Global Well-Posedness for a Higher Order Schrödinger Equation, J. Fourier Anal. Appl., 12 (2006), No. 1, 53-70.

H. H. Chen, Y. C. Lee, C. S. Liu. Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method. Phys. Scr., 20 (1979), 490-492.

M. Delfour, M. Fortin, G. Payre: Finite-Difference Solutions of a Non-linear Schrödinger Equation. J. Comput. Phys. 44 (1981), 277-288.

G. Fibich: Adiabatic law for self-focusing of optical beams. Opt. Lett., 21 (1996), No. 21, 1735-1737.

R. Hirota. Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys., 14 (1973), No. 7, 805-809.

Y. Kivshar, B. Malomed.: Dynamics of solitons in nearly integrable systems, Rev. Modern Phys., 61 (1989), No. 4, 763-915.

Y. Kodama, A. Hasegawa: Nonlinear Pulse Propagation in a Monomode Dielectric Guide. IEEE J. Quantum Electron., QE-23 (1989), 510-524.12

D. J. Korteweg, G. De Vries. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag., 539 (1895), 422-443.

S. K. Lele. Compact Finite Difference Schemes with Spectral-like Resolution. J. Comput. Phys., 103 (1992), 16-42.

B. Li. Exact soliton solutions for the higher-order nonlinear Schrödinger equation. Int. J. Modern Phys. C, 16 (2005), No. 8, 1225-1237.

D. Furihata, T. Matsuo. Discrete variational derivative method : a structure-preserving numerical method for partial differential equations, Chapman &Hall/CRC, 2011.

A. F. Pazoto, M. Sepúlveda, O. Vera. Uniform stabilization of numerical

schemes for the critical generalized Korteweg-de Vries equation with damping. Numer. Math., 116 (2010), 317-356.

T. L. Perel’man, A. Kh. Fridman, M. M. El’yashevich. A modified Korteweg-de Vries equation in electrohydrodynamics. Sov. Phys. JETP, 39 (1974), No. 4, 643-646.

M. J. Potasek, M. Tabor. Exact solutions for an extended nonlinear Schrödinger equation. Phys. Lett. A, 154 (1991), No. 9, 449-452.

N. Sasa, J. Satsuma. New-Type of Soliton Solutions for a Higher-Order Nonlinear Schrödinger Equation. J. Phys. Soc. Jpn., 60 (1991), No. 2, 409-417.

M. Smadi, D. Bahloul. A compact split step Padé scheme for higher-order nonlinear Schrödinger equation (HNLS) with power law nonlinearity and fourth order dispersion. Comput. Phys. Commun., 182 (2011), 366-371.

M. Smadi, D. Bahloul. Dynamic of HNLS Solitons using Compact Split Step Padé Scheme. J. Phys. Conf. Ser., 574 (2015).

H. Takaoka. Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity. Adv. Differential Equations, 4 (1999), No. 4, 561-580.

H. Takaoka. Well-posedness for the Higher Order Nonlinear Schrödinger Equation. Adv. Math. Sci. Appl., 10 (2000), No. 1, 149-171.

V. E. Zakharov, A. B. Shabat. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP, 34 (1972), No.1, 62-69.




DOI: http://dx.doi.org/10.24193/subbmath.2019.2.03

Refbacks

  • There are currently no refbacks.