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Choquet integral analytic inequalities

George A. Anastassiou

Abstract. Based on an amazing result of Sugeno [15], we are able to transfer
classic analytic integral inequalities to Choquet integral setting. We give Choquet
integral inequalities of the following types: fractional-Polya, Ostrowski, fractional
Ostrowski, Hermite-Hadamard, Simpson and Iyengar. We provide several exam-
ples for the involved distorted Lebesgue measure.
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1. Background

We need the following fractional calculus background:

Let @ > 0, m = [a] ([-] is the integral part), 8 =a—-m,0< 8 < 1, f € C([a, b)),
[a,b] C R, x € [a,b]. The gamma function I is given by I' (a) = [~ e~ t*~ dt. We
define the left Riemann-Liouville integral

U @) = i | S0 f () dr, (L.1)

a < < b. We define the subspace CZ, ([a,b]) of C™ ([a, b]):

Ca ([a,b]) = {f € C™ ([a,b) : S, ) € C* ([a,0]) } (1.2)

For f € C¢, ([a,b]), we define the left generalized a-fractional derivative of f over
[a,b] as

D3 f o= (73, (13)

see [1], p. 24. Canavati first in [5] introduced the above over [0,1].
Notice that Dy, f € C ([a,b]).
Furthermore we need:
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Let again « > 0, m = [a], 8 = a —m, f € C([a,b]), call the right Riemann-
Liouville fractional integral operator by

b
(1) (@) == ﬁ/ (t— )" f (1), (1.4)
€ [a, b], see also [2], [9], [14]. Define the subspace of functions
Cp (o) = { £ € O™ (b)) : £ € € (a b))} (15)

Define the right generalized a-fractional derivative of f over [a,b] as

D = ()" (R0 (1.6)

see [2]. We set DY_f = f. Notice that D¢ f € C ([a,b]).
We need the following fractional Polya type (see [12], [13], p. 62) integral in-
equality without any boundary conditions.

Theorem 1.1. ( ] 4) Let 0 < a < 1, f € C([a,b]). Assume f € C2, ([a, %))
and f € Cg ([2f® b]) Set

2

M (£) 1= max { [ D | gy o s 1D s } - (1.7)
Then it

/f ) da </ \f ()| de < M (f )F(lz_+)2)2a (1.8)

Inequality (1.8) is sharp, namely it is attained by

B (x—a)*, z € [a, 2F],
f*(x)—{ (b—2)*, x e [252,0] },0<a<1. (1.9)

The famous Ostrowski ([11]) inequality motivates this work and has as follows:

Theorem 1.2. It holds
(‘T_GT-H)) _ ’
_— /f Yy — f ()] < ( S e

where f € C' ([a,b]), x € [a,b], and it is a sharp inequality.

Another motivation is author’s next fractional result, see [3], p. 44:

Theorem 1.3. Let [a,b] C R, @ > 0, m = [a] ([-] ceiling of the number),
f € AC™([a,b)) (i.e. "=V is absolutely continuous), and Hﬁz(’*fH
D2 J|

‘ *xof 00,[z0,b]
Caputo fractional derivatives of f of order «, respectively), xo € [a,b]. Assume
f® (20) =0, k=1,...m—1. Then

b_a/f dr — f (20)| <

)
00,[a,zo]

< oo (where D, f,DmOf are the right (12]) and left ([8], p. 50)

1
(b—a)T(a+2)
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{2y o= [Pt 07
Ja,xo] 00,[zo,b]

1
< - H ° H (b—a). 111
- T (a —+ 2) max { H o= f Jla 10] wof Jzo,b] a) ( )
In the next assume that (X, F) is a measurable space and (R*) R is the set of
all (nonnegative) real numbers.
We recall some concepts and some elementary results of capacity and the Cho-
quet integral [6, 7].

Definition 1.4. A set function p : F — RT is called a non-additive measure (or
capacity) if it satisfies

(1) p(@) =0;

(2) p(A) < p(B) forany AC B and A, B € F.

The non-additive measure p is called concave if

W(AUB) +u(ANB) < u(A)+ pu(B), (1.12)

for all A,B € F. In the literature the concave non-additive measure is known as
submodular or 2-alternating non-additive measure. If the above inequality is reverse,
1 is called convex. Similarly, convexity is called supermodularity or 2-monotonicity,
too.

First note that the Lebesgue measure A\ for an interval [a,b] is defined by
A([a,b]) = b— a, and that given a distortion function m, which is increasing (or non-
decreasing) and such that m (0) = 0, the measure p(A) = m (A (A4)) is a distorted
Lebesgue measure. We denote a Lebesgue measure with distortion m by p = py,. It
is known that u,, is concave (convex) if m is a concave (convex) function.

The family of all the nonnegative, measurable function f : (X, F) — (RT, B(R")) is
denoted as L}, where B (R™) is the Borel o-field of RT. The concept of the integral
with respect to a non-additive measure was introduced by Choquet [6].

Definition 1.5. Let f € LT . The Choquet integral of f with respect to non-additive
measure g on A € F is defined by

O)/Afdu - Aoo,u({:c:f(a:) > 110 A)di, (1.13)

where the integral on the right-hand side is a Riemann integral.
Instead of (C) [ fdu, we shall write (C) [ fdu. If (C) [ fdu < co, we say that
f is Choquet integrable and we write

L¢ (1) { /fdu<oo}

The next lemma summarizes the basic properties of Choquet integrals [7].
Lemma 1.6. Assume that f,g € L ().

((©) [1adn=n(), A€ 7.
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(2) (Positive homogeneity) For all A € RY, we have

©) [Adu=x-(©) [ sa

(8) (Translation invariance) For all ¢ € R, we have

© [(¢+du=(C) [ fan-e.

(4) (Monotonicity in the integrand) If f < g, then we have

© [ sau= () [ gan

(Monotonicity in the set function) If p < v, then we have

© [ rin <) [ av

(5) (Subadditivity) If u is concave, then

© [(t+9dn=©) [ sdu+©) [ gdn.

(Superadditivity) If u is convez, then

© [(t+9dnz©) [ sdu+(©) [ gdn.

(6) (Comonotonic additivity) If f and g are comonotonic, then

© [(t+9dn=(©) [ sdu+(©) [ gn,
where we say that f and g are comonotonic, if for any x,x’ € X, then
(f(x) = f(2") (g (z) — g (a")) = 0.

We next mention the amazing result from [15], which permits us to compute the
Choquet integral when the non-additive measure is a distorted Lebesgue measure.

Theorem 1.7. Let f be a nonnegative and measurable function on RY and p = ., be
a distorted Lebesgue measure. Assume that m (x) and f (x) are both continuous and
m (x) is differentiable. When f is an increasing (non-decreasing) function on RT, the
Choquet integral of f with respect to ., on [0,t] is represented as

©) /M Fdm = /O ' (t - 2) f (x) dz, (1.14)

however, when f is a decreasing (non-increasing) function on R the Choquet integral

of f is
() fdpm = / m' (z) f (z) dx. (1.15)
[0,1] 0
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2. Main results

From now on we assume that f : RT™ — RT is a monotone continuous function,
and p = fiy, i.e. u(A) =m (X (A)), denotes a distorted Lebesgue measure where m is
such that m (0) = 0, m is increasing (non-decreasing) and continuously differentiable.

By Theorem 1.7 and mean value theorem for integrals we get:

i) If f is an increasing (non-decreasing) function on R*, we have

@) [t "2 / m! (t — ) f (z) de

[0,2]
t
=m'(t—¢) / [ (z)dz, where € € (0,1). (2.1)
0
ii) If f is a decreasing (non-increasing) function on RT, we have
¢ t
1.15)
© [ 12 [t @ s@ar=mie) [[rwan 02
0.t 0 0

where £ € (0,1).
We denote by
() = { m' (t — &), when f is increasing (non-decreasing)

m’ (§), when f is decreasing (non-increasing), (2:3)

for some & € (0,t) per case.
We give the following Choquet-fractional-Polya inequality:

Theorem 2.1. Let 0 < a < 1, f = fljoq, t € R*, all considered as above in this
section. Assume further that f € Cg, ([0, %]) and f € Cf- ([%,t]) Set

M (f) (8) = max {[| D o, 1 P2 Al 2. - (2.4)
Then
O) [ <0 OM (F) () e (25)
( [0,¢] Hom = ’ T (O{ + 2) 2 ' '
Proof. By Theorem 1.1 and earlier comments. U

Usual Polya inequality with ordinary derivative requires boundary conditions
making a Choquet-Polya inequality impossible.

We give applications:
Remark 2.2. i) If m (t) = t%5, t € RT, then m (0) = 0, m (t) > 0, m’ (t) = ﬁ >0,
and m is increasing. Then v (¢,&) < 1.

i) Ifmt)=1—et>0,te R then m(0) =0, m (t) =e~t >0, and m is
increasing. Then 7 (¢,£) < 1.

i) Ifm(t) =e'—1>0,t € R, m(0) =0, m (t) = e’ > 0, and m is increasing.
Then v (¢, &) < et.

iv) If m (t) = sint, for ¢ € [0, %], we get m (0) = 0, m’ (t) = cost > 0, and m is
increasing. Then ~ (¢,£) < 1.

We continue with the Choquet-Ostrowski type inequalities:
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Theorem 2.3. Here f : Rt — R is a monotone continuous function, [, is a distorted
Lebesque measure, where m is such that m (0) = 0, m is increasing and is twice
continuously differentiable on RY. Here 0 < xo <t € R*. Then

1)

2O [ P~ (¢~ 0) ] (w0)
(0,¢]

< <i + W) tH(m'(t* )£

if f is an increasing function on RY,
and

00,[0,1]

2)
1 /
‘t (C) /[O,t] fdpim —m' (z0) f (w0)

<<i+“ﬂp93tWWﬁﬂ , (2.7)

00,[0,t]

if f is a decreasing function on RT.

Proof. By (1.10) we have that (zo € [0,¢])

Yo [ fpm —m' (t = 20) f (x0)

t [0.¢]
Ly |1 7
1 [ ) f @) do (¢ o) £ G20)
0
2
1 (w0—3) /
< g+ )t e - : 2.8
_@+ =) eere=an ., (28)
when f is an increasing function on R¥.
Also we have that
1
(O [ = (w0) £ a0)
[0,t]
(1.15) |1 ¢
213 [ () £ (@) do = (o) £ o)
0
a2 (1 (20— 3)" tllm' ) 2.9
= \4 + 12 H(m 7) Hoo,[o,t]’ (2.9)
when f is a decreasing function on R¥. O

‘We make
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Remark 2.4. (continuing from Remark 2.2) Assuming m is twice continuously differ-
entiable is quite natural Indeed:

i) If m(t) = 14, t € RY, then m/(t) = (14877, m"(t) = —2(1+1)"°,
m® (1) =6 (14+1)"", m® (t) = =24 (1 4 t)~°, etc, all higher order derivatives exist
and are continuous.

i) Ifm(t) =1—et t € RY, then m' (t) = e, m” (t) = —e~t, m®) (t) = e,
m® (t) = —e™?, etc, all higher order derivatives exist and are continuous.

iii) If m (t) = e* — 1, t € RY, then m( (t) = €', i = 1,2,..., all derivatives exist
and are continuous.

iv) If m(t) = sint, t € [0,3], then m’ (t) = cost, m” (t) = —sint, m® (t) =
—cost, m® (t) = sint, etc, all derivatives exist and are continuous.

We continue with fractional Choquet-Ostrowski type inequalities.

Theorem 2.5. Here f : Rt — RT is an increasing continuous function, i, is a
distorted Lebesgue measure and 0 < zq <t € RT.
Leta > 0, m = [a], (m' (t—-) f) € AC™ ([0,4]), and Hﬁjo, (m’ (t — -)f)H

o0,[0,a0] '

HD*mO (m' (t — )f)H < oo. Assume (m' (t —-) ) (zg) =0, k=1,...,m — 1.
Then elzo]
|1<0) Fdpim —m (¢ = 0)  (w0)
0.1
R | L U CERES]
o N | I . (2.10)
Sp@flzg“wX{HL%o<’<f"f”Hm¢Qm]’mo< (- f“)hot}

Proof. By Theorem 1.3. g

Theorem 2.6. Here f : R™ — RY is a decreasing continuous function, fi,, 1is
a distorted Lebesque measure and 0 < xy < t € RT. Let a > 0, m = [a],

(m'f) e AC™ ([0,¢t]), and HDmo— fmu m'f) H . Assume

»[ZL’OJ]

b

Hoo,[O,xo]
(m'f) (:L'O) =0,k=1,...,m—1. Then

0,¢]

‘1(6» fdtm = (z0) ] (20)

1
< @z UPn- |, 7 [Pl o)
<o {H%_mprMd [P, ')

00, [0,1]

(t- a1}
by

< l_‘(a_’_)max{HDm— (m’f)H D2, o) H W]}. (2.11)

Proof. By Theorem 1.3. O

00,[0,z0]
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We need the well-known Hermite-Hadamard inequality:

Theorem 2.7. Let f : [a,b] — R be a continuous convez function, [a,b] C R. Then
TEIE f+10)

We give the following Choquet-Hermite-Hadamard inequalities:

x)dr < (2.12)

Theorem 2.8. Here f : Rt — RT is a monotone continuous convex function, i, s
a distorted Lebesgue measure, where m is such that m (0) = 0, m is increasing and
continuously differentiable on R*. Here [a,b] C R*. Then

i) If f is decreasing, we have that

w©f(57) <5 O [ 1@ <m © KL @

for some € € (0,b—a).
it) If [ is increasing, we have that
wo-a-0 1 (50) < @ [ 7@ dun @

- b —a [a,b]
fla) + f(b)
2 )

<m' (b—a—1) (2.14)

for some ¥ € (0,b—a).

Proof. Let f be a convex function from [a,b] C RT into R*. Let t1,t2 € [0,b—al,
these are of the form t; =z — a, to = y — a, where z,y € [a, b].
Consider (X € (0,1))
flatxti+ (1 -=Nt2) = fla+A(r—a)+(1-A)(y—a))
=fQe+ (10 =Ny <Af @)+ 0= f(y)
=AMa+z—a)+1-Nflaty—a)
=AM (a+t)+ (1 =A)f(a+t2),

proving that f (a + -) is convex over [0,b — a].

Also it holds

© [ | F@din )= (C)/[ @D @), (2.15)
a, 0,b—a

Clearly, if f is increasing over [a, b], then f (a 4+ -) is increasing on [0,b — a], and vice
verca. And if f is decreasing over [a,b], then f (a + -) is decreasing on [0,b — a], and
vice verca.

i) If f is decreasing, then

b—a

(2% m' (z) f (a+ z)dz
@ Feradn@ "2 [ s

b—a
=m/ (f)/o f(a+z)dz, forsome ¢ € (0,b—a). (2.16)



Choquet integral analytic inequalities

By (2.12) we get

() 2k [ 10
and then
() w50 [ < (FOH O e,

That is we proved (by (2.15), (2.16))
a C) Jigw [ (@) dpim (z a
f< +b)m,(§)<( ) Jay £ (@) dp ()S(f()+f(b)

2 - b—a
for some & € (0,b—a).

ii) If f is increasing, then

b—a
(©) Flat2)dpm (@) “é‘”/ m' (b—a—z)flatz)d
[0,b—a] 0

b—a
:m’(b—a—w)/o f(a+z)dz, for some ) € (0,b—a).

Again by (2.12) we get

((532) <ty [ e < 0320

and

() mo-a-n <™ [T

<f(a)+f(b)

IN

) LA 0r

That is we proved (by (2.15), (2.20))

() o-a-w)

) f[a,b] [ (@) dpm ()
b—a

< (L9210, _amy,

IN

for some ¥ € (0,b—a).

We need the well-known Simpson inequality:

25

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

Theorem 2.9. If f : [a,b] — R is four times continuously differentiable on (a,b) and

1@ = sup 59 @) <,
o z€(a,b)



26 George A. Anastassiou

then the Simpson inequality holds:

b_a/ o {f( );'f()+2f(a—2|-b>H§28;0Hf(4)Hoo(b_a)4.
(2.24)

We give the corresponding Choquet-Simpson inequalities:

Theorem 2.10. Here f : R™ — R™T is a monotone function which is four times contin-
uously differentiable on RY, p,, is a distorted Lebesque measure, where m is such that
m (0) = 0, m is increasing and five times continuously differentiable on R, t € RT.
Then

i) if [ is increasing, we have that

L) [ gt 3 [OSOLE O (1 (1) ‘

<— |l ¢t = 4)H 2.2
*2880H<m( L Y (2.25)

and
it) if [ is decreasing, we have that

% © [ s % {m’ (0) £ (0) : m () F) (;) ; @] ‘

4)H . (2.26)

< 350 07
= 2880 04°

Proof. 1) If f is increasing, then

Lo fdum_l[m’(t)f(0)+m’(0)f(t)Hm/(t)f(t)]’

t 0.4 3 2 2 2
Lt sy L[ (t)f(O)JQrm 10 o (1) 5(2)]
(2.24) (4)
< gm0 Ny 227

ii) If f is decreasing, then

N [ - 4 [P OE IO (4 (1]

[0,] 3 2 2
] s [ERI0 o () ()]
(2.24) )
< gl DOt (2.28)

We need the famous Iyengar inequality [10] coming next:
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Theorem 2.11. Let f be a differentiable function on [a,b] C R and |f' (x)| < M.
Then

b
[ tada-50-a) @+ 1)

My(b—a)® (f(b)~[(a)”

<
= 4 AM,

(2.29)

We present the corresponding Choquet-Iyengar inequalities:

Theorem 2.12. Here f : Rt — R* is a monotone differentiable function on RY, u,,
is a distorted Lebesgue measure, where m is such that m (0) = 0, m is increasing and
twice continuously differentiable on R, t € R*. Then

i) if f is increasing and |(m’ (t — ) ) (x)| < Mz, V x €[0,1], My > 0, we have
that

[0,4] 2

(@) (&) dpt (2) — & (' (1) £ (0) +m (0) 1 (t))‘

_Mat? (m/(0) £ (1) —m/ () £ (0)°
=7 AN, '
i) if f is decreasing and ’(m’f)/ ()| < M3, V x € [0,t], M3 > 0, we have that

(2.30)

(@) o (@) dpim, (x)—%(m’ (0) £ (0) +m' (t) £ (1))

< Myt (1) f (8) — ' (0) £ (0))

<= T (2.31)
Proof. i) If f is increasing and |(m/ (t — -) ) (z)| < Ma, V x € [0,t], then
’(O) P @) = 0 £O) 4 01 (1)
a1 | [F t, /
01 [t (¢ (@) e o 0.1 @+ 0)1 1)
(229 Mpt?  (m’ (0) f (t) —m’ (¢) £ (0))*
< Z - o . (2.32)
ii) If f is decreasing and |(m/f)’ (z)| < Ms, V € [0,t], then
©) ] F@din (@) =5 (' ©) £ 01 1)
as) | [f t, /
2| [ @) £ o) = o 00 £10) 40 (0)£ 0)
(229 Mst>  (m/ (¢) f (t) —m’ (0) f (0))° 0
= Ty AN :

Note 2.13. One can transfer many analytic integral classic inequalities to Choquet
integral setting but we choose to stop here.
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