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The critical point of a sigmoidal curve

Ayse Humeyra Bilge and Yunus Ozdemir

Abstract. Let y(t) be a monotone increasing curve with lim
t→±∞

y(n)(t) = 0 for all

n and let tn be the location of the global extremum of the nth derivative y(n)(t).
Under certain assumptions on the Fourier and Hilbert transforms of y(t), we
prove that the sequence {tn} is convergent. This implies in particular a preferred
choice of the origin of the time axis and an intrinsic definition of the even and odd
components of a sigmoidal function. In the context of phase transitions, the limit
point has the interpretation of the critical point of the transition as discussed in
previous work [3].
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1. Introduction

A sigmoidal function y(t) is a monotone increasing function with horizontal
asymptotes as t → ±∞. Such functions occur in probability theory and in a variety
of applications that represent the passage between two stable states, in particular in
phase transitions.

In previous work [5] we have modeled the sol-gel transition of the polyacrylamide-
sodium alginate composite in terms of the Susceptible-Infected-Removed (SIR) epi-
demic model that represents the spread of an epidemic in a closed society. This model
was shown to be in good agreement with the aforementioned gelation phenomena and
we tried to take advantage of an exact mathematical model to search for the exact
instant of onset of the sol-gel transition [3, 4]. We computed higher derivatives of
the sigmoidal curve representing the phase transition, up to orders 20 to 30 and we
observed that the points where their reach their absolute extrema seemed to have a
limit point, as shown in Fig. 1.

This point agreed qualitatively with the gel point of the polyacrylamide-sodium
alginate composite and we proposed to define the “critical point of a sigmoidal curve”
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y(t) as the limit of the sequence of points where the higher derivatives y(n)(t) reach
their absolute extreme values [3].
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Figure 1. The Susceptible-Infected-Removed dynamical system
S′ = −kSI, I ′ = kSI − ηI, R′ = ηI, as a model for the gelation
phenomena. (a) The first 24 derivatives of R(t) normalized to 1 for
k = 5, η = 1 and S0 = 0.9 are plotted against S(t), which is a mono-
tone decreasing function of t. The phase transition point is indicated
by (∗). (b) The time domain plots of the solution curves S, I, R.
The phase transition point tc indicated by (o) is located between the
maximum of I, tm denoted by (∗) and the inflection point of I, ta
denoted by (+). The derivatives of the sigmoidal function R(t) are
plotted versus S(t), which is a monotone function of time.

Referring to Fig. 1(a), we first note that there seems to be a gap in the zero
set of the derivatives; that is, the normalized absolute values of the odd derivatives
agglomerate quickly near the point shown by (∗), while the absolute extrema of the
even derivatives approach this point much more slowly. On the other hand, the work
of Polya [9] on the zeros of the set of derivatives of an analytic function applied to a
smooth sigmoidal curve implies that there should be no gap in the set of zeros. Due to
the computational limitations of the SIR system, we worked with the logistic growth
function and we could in fact see that the gap closes when derivatives up to order
200 are included, as shown in Fig. 2. Nevertheless, despite the strong evidence for the
existence of a critical point, we were unable to prove even the simplest observed fact
that the absolute extreme values of the odd derivatives of the logistic growth curve
are located at t = 0.

The aim of the present work is the study of the existence and the location of the
“critical point of a sigmoidal curve” as described Section 2, Definition 1. In earlier
stages of this study, the existence of a critical point was thought to be a peculiarity
of the SIR system, but later on after working with numerous examples we came up
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Figure 2. The normalized derivatives of the logistic growth y′ =
(1− y2) (a) The plot of derivatives up to order 30 with respect to y.
All odd derivatives reach their absolute extremum at the origin but
there seems to be a gap in the zero set. (b) The distance of the first
zero of the nth derivative to the origin. The apparent gap seems to
close after n = 200.

with the belief that it is a consequence of the general properties of sigmoidal curves.
Intuitively, the critical point of an odd sigmoidal curve is expected to be t = 0, but
there was no guess on where the critical point of curves with no symmetry would be
located.

The main results of the paper are presented in Section 3. In Section 3.1, we prove
the existence of critical point for the general case (Proposition 2), then in Section 3.2,
we consider odd sigmoidal curves and use milder assumptions to prove that t = 0 is
the critical point. For the case with no symmetry, the location of the critical point
is crucially related to an appropriate choice of the origin of the time axis, in such a
way that the phase of the Fourier transform of the first derivative is asymptotically
constant. This leads to an intrinsic choice of origin, hence an intrinsic definition of
the even and odd components, provided that the relevant assumptions are satisfied.
With this choice of origin, t = 0 turns out to be the critical point, provided that it
exists.

The plan of the paper is as follows. The definitions and theorems necessary
for subsequent derivations are presented in Section 2. In Section 3.1, we first prove
the existence of the critical point for the general case, then, in Section 3.2, we give
alternative proofs for sigmoidal curves with symmetry, using weaker assumptions.
Basic properties of the Fourier and Hilbert transforms are given in the Appendix.
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2. Preliminaries

In Section 2.1, we illustrate the existence and non-existence of critical points
for certain sigmoidal curves. We define the critical point of a sigmoidal curve and
present our basic assumptions in Section 2.2. In Section 2.2, we define the intrinsically
even and odd components and in Section 2.3, we prove certain results related to the
properties of the envelope.

2.1. The existence and non-existence of the critical point

We will denote the sigmoidal curve as y(t) and its first derivative that is a
localized hump by f(t), hoping that there will be no confusion when we refer to even
and odd derivatives of y or f . Let tn be the point where the nth derivative y(n)(t)
reaches its extreme value and let yn = y(n)(tn). Based on our observations we expect
that the subsequences {t2k} and {t2k+1} converge at different rates. For example, in
the case of an odd sigmoidal curve, t2k+1 = 0 for each k, while {t2k} converges slowly
as seen from Fig. 2(b).

The standard and generalized logistic growth curves provide examples to the
existence of the critical point for symmetrical and asymmetrical growth. The standard
logistic growth curve is the sigmoidal curve y(t) = tanh(t), while the generalized
logistic growth curve with horizontal asymptotes at −1 and 1 is given by y(t) =

−1 + 2
[
1 + ke−βt

]−1/ν
, where k > 0, β > 0 and ν > 0. The parameter k can be

adjusted by a time shift, β corresponds to a scaling of time and ν is the key parameter
that determines the shape of the growth. For k = 1 the critical point is located at
t = 0 (see Example 2). In Fig. 3(a), all even derivatives of the sigmoidal function are
zero at t = 0; the apparent gap is still discernable despite a much higher number of
derivatives are plotted. The behavior of the generalized logistic growth (Fig. 3(b)) is
more or less the same except that the zeros of even derivatives are not fixed but they
agglomerate near t = 0.

The Gompertz function with the same asymptotes is given by y(t) = −1 +
2 exp(−e−βt). This function can be expressed as the limit of the generalized logistic
family for k = 1/n, ν = 1/n, as n→∞ and provides an example to the non-existence
of the critical point. As seen in Fig. 3(c), the normalized derivatives do not accumulate
and the critical point seems to have moved to negative infinity. The derivatives of the
Gompertz function of orders 20, 30 and 40 are presented in Fig. 4, in order to display
the shift of the wave packets towards minus infinity.

The standard logistic growth curve occurs as the solution of the “Susceptible-
Infected-Susceptible” (SIS) model. In a study of the formation of (reversible) physical
gels, [6], we showed that that generalized logistic growth curves are solutions to a
modified form of the (SIS) model and we used the results of Example 2, in Section 3,
to determine the gel point directly, using the approximation of experimental results
by generalized logistic growth curves, known also as “5-point sigmoids”.

In [2] we expressed sufficient conditions for the existence of a critical point of
a sigmoidal curve in terms of the Fourier transform of the first derivative. For the
sigmoidal curves that arise as solutions of the SIR model, we could only give numer-
ical evidence for the existence of the critical point. But for the solutions of the SIS
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model expressed in terms of generalized logistic growth functions, we could express
the location of the critical point in terms of the parameters of the generalized logistic
growth curve [6] where we used without proof the expression of the Fourier transform
of its first derivative.
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Figure 3. (a) Normalized derivatives of the standard logistic
growth; (b) Normalized derivatives of the generalized logistic growth
(β = 1, k = 1, ν = 1/5) up to order 30. The apparent gap is still
discernable in both figures, despite the large number of derivatives
plotted. The behavior of the generalized logistic is more or less the
same except that the zeros of even derivatives are not fixed. (c) Nor-
malized derivatives of the Gompertz function. The Gompertz func-
tion is the limit of the generalized logistic family, the critical point
seems to have moved to negative infinity.
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Figure 4. The time domain plots of the 20th, 30th and 40th deriva-
tives of the Gompertz function respectively in (a), (b) and (c). The
wave packets are shifted to left towards minus infinity.

2.2. Basic definitions

A sigmoidal function y(t) is a monotone increasing function with horizontal

asymptotes y1 and y2 as t → ±∞ and with lim
t→±∞

y(n)(t) = 0 for all n ≥ 1. We

propose the following definition for the “critical point”.

Definition 2.1. Let y(t) be a sigmoidal curve and assume that the set of points where
the even derivatives and the odd derivatives reach their absolute extremum converge
to the same point. The common limit of these derivatives, if it exists, is called the
critical point of the sigmoidal curve.
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The location of the critical point brings into consideration an intrinsic definition
of being even or odd, hence a preferred choice of origin of the time axis. If f(t) is even,
then its Fourier transform F (ω) is real and even, but if f(t) is shifted in time, then
F (ω) is no longer real, but its phase is linear. The other way around we can recognize
an intrinsically even function by looking to the phase of its Fourier transform. From
this point of view, the preferred origin for the time axis is given by the shift that will
make F (ω) real.

In the general case where f(t) has no symmetry, F (ω) has a nonzero phase. But
if the phase has an oblique asymptote αω + φ0, then after a time shift, it will be
asymptotically constant. Thus, the preferred origin of time is obtained by the time
shift that makes the phase of F (t) asymptotically constant, provided that the phase
has an oblique asymptote.

We use this property to define the intrinsically even and intrinsically odd func-
tions via their Fourier transform.

Definition 2.2. Let f(t) be a function whose Fourier transform F (ω) exists. f(t) is
called intrinsically even if there is real number α such that e−iαωF (ω) is real. f(t)
is called intrinsically odd if there is real number α such that e−iαωF (ω) is pure
imaginary.

If there is no real number α such that f(t− α) is neither even or nor odd, then
we define its intrinsically even and odd components provided that the phase of F (ω) is
asymptotically linear, i.e, F (ω) = |F (ω)|eiφ(ω) where φ(ω) has an oblique asymptote
with slope α, as ω → ±∞.

Definition 2.3. Let f(t) be a function such that the Fourier transform F (ω) exists
and the phase of F (ω) has an oblique asymptote with slope α as ω → ±∞. Then, the
intrinsically even and odd components of f(t) are the inverse Fourier transforms of
the real and imaginary parts of e−iαωF (ω).

2.3. The envelope of the derivatives

Let f(t) be a derivative of a sigmoidal function. We will prove that the magnitude
of the analytic representation fA(t) (as defined in the Appendix) gives the envelope
of f(t) in the sense that f(t) touches |fA(t)| between any two consecutive zeros.

Proposition 2.4. Let f(t) be a real function whose Fourier and Hilbert transforms
exit. If t1 and t2 are any two consecutive zeros of f(t), then there is a t3 such that
t1 < t3 < t2 and f(t3) = ±|fA(t)|.
Proof. Writing fA(t) = A(t)eiϕ(t), we can express f(t) and fh(t) as

f(t) = |fA(t)| cos (ϕ(t)) , fh(t) = A(t) sin (ϕ(t)) .

If t1 and t2 are two consecutive zeros of f(t), then we should have ϕ(t1) = π
2 + kπ

and ϕ(t2) = π
2 + (k + 1)π. Thus, provided that ϕ(t) is continuous, there will be a

time t3, t1 < t3 < t2, such that ϕ(t3) = (k + 1)π, hence, fh(t3) = 0. Thus the zeros
of f(t) and fh(t) alternate. It follows that f(t3) = ± |fA(t3)| for some t1 < t3 < t2.
The local extremum of f(t) in between t1 and t2 is denoted by t4. If f(t) is positive
(negative) on (t1, t2) and f ′(t3) is negative (positive), then t4 < t3, while if f(t) is
positive (negative) on (t1, t2) but f ′(t3) is positive (negative), then t3 < t4. �
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3. The existence and the location of the critical point of a sigmoidal
curve

For the case with symmetry, i.e, for an odd sigmoidal curve y(t), the Fourier
transform of the first derivative, F (ω) is real. All odd derivatives of y(t) have a local
maximum at t = 0. We expect the local maximum to be located at t = 0. For a
sigmoidal curve with no symmetry, we will show that the location of the critical point
is given by the linear phase factor of F (ω).

The motivation for the choice of the assumptions in Proposition 2 is based on
the following observation. In the examples studied, higher derivatives of the sigmoidal
curve look like wave packets, hence in the frequency domain, the Fourier transform
of the derivatives should have a nearly band bass spectrum. If the Fourier transform
of all derivatives have the same (constant) phase, then in the time domain, the wave
packets are centered at the same point. As this condition is not satisfied for sigmoidal
curves without symmetry, the best that we can expect is that all derivatives have
asymptotically a constant phase (possibly after a shift of time) and the band pass
spectrum moves to infinity as the order of differentiation increases.

Before proceeding to the proofs, we start by examples to illustrate the behavior
of curves with no symmetry.

Example 3.1. If f(t) is an even localized hump, then its even derivatives are even and
its odd derivatives are odd functions. By adding these with appropriate multiples one
can generate positive pulses with no symmetry. As an example, the first derivative
of the standard logistic growth, sech2(t), is an even pulse. We obtain a positive pulse
with no symmetry by adding a multiple of its second derivative

f(t) = y(1)(t) = sech2(t)− λ
[
−2 sech2(t) tanh(t)

]
(0 < λ < 0.5),

the peak being located at the right of the point t = 0. The Fourier transform of f(t)
is

F (ω) = (1− iλω)

√
2

π

πω/2

sinh(πω/2)
.

The phase of F (ω) is φ(ω) = arctan (Im(F )/Re(F )) = arctan(−λω). As ω → ±∞,
φ(ω) approaches ∓π/2, hence F (ω) has asymptotically constant phase.

Example 3.2. The first derivative of the generalized logistic growth is

f(t) =
2kβ

ν
e−βt

(
1 + ke−βt

)−1−1/ν
.

The Fourier transform of f(t) is [1]

F (ω) =

√
2

π
k−

iω
β

Γ(1 + iω
β )Γ( 1

ν −
iw
β )

Γ( 1
ν )

.

Since k−
iω
β = e−i(

ln k
β )ω, it follows for k 6= 1, there is a linear phase factor in F (ω).

Let k = 1 and β = 1. For 1/ν = n, one can use the property Γ(z) = Γ(z) repeatedly
to see that

F (ω) =
1

Γ(n)
(1− iω)(2− iω) . . . (n− 1− iω) Fs(ω),
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Figure 5. a) Time domain plots of the first derivative of the gener-
alized logistic growth for 1/ν = 1, 1/4, 1/8, 1/12. b) The magnitude
of the Fourier transform, c) The angle of the Fourier transform.

where Fs(ω) is the Fourier transform of the standard logistic growth. The multiplica-
tive factor is a complex polynomial; in particular the zeros of its real part are bounded,
hence as ω → ±∞, the phase goes to a multiple of π/2. It follows that, for each n, the
phase is asymptotically constant (provided that k = 1). The time domain plot, the
magnitude and the phase of the Fourier transforms of the generalized logistic family
for ν = 1, 1/4, 1/8 and 1/12 are presented in Fig. 5. We note that as 1/ν increases,
the phase approaches to its horizontal asymptotes more and more slowly.

3.1. Existence of the critical point: The general case

We will now prove that if f(t) satisfies asymptotically constant phase and band-
pass hypotheses, to be specified below, then the critical point is located at t = 0.
Note that the asymptotically constant phase condition is trivially satisfied when f(t)
is even.

Proposition 3.3. Let f(t) be the first derivative of a sigmoidal curve y(t) and f (n)(t)
be its nth derivative. If
(i) the Fourier transform of f(t) has the form F (ω) = |F (ω)|e−iαωeiψ(ω) where α is
a constant and ψ(ω) has horizontal asymptotes,
(ii) for ω > 0, ωn|F (ω)| has a single maximum at ωn and the ωn’s are unbounded,
(iii) the spectrum is localized in the sense that there are constants ωa and ωb (depend-
ing on n), such that

lim
n→∞

∫
|ω|<ωa

ωn|F (ω)| dω = lim
n→∞

∫
|ω|>ωb

ωn|F (ω)| dω = 0,

then the sigmoidal curve y(t) has a critical point located at t = α.

Proof. For simplicity assume that α = 0. If the Fourier transform of f(t) is F (ω), then
the Fourier transform of f(t − α) is e−iαωF (ω). We will express |f (n)(t)| using the
Fourier inversion formula and compare it with |f (n)(0)|. The assumption (iii) implies
that for all ε, there is N > 0 such that for n > N , there are constants ωa and ωb
(depending on n), such that∫

|ω|<ωa
ωn|F (ω)| dω <

ε

8
and

∫
|ω|>ωb

ωn|F (ω)| dω <
ε

8
.
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Thus for n large, the contribution from low and high frequencies are negligible, hence
the main contribution comes from a neighborhood of ωn. By assumption (ii) the ωn’s
are unbounded and using the asymptotically constant phase assumption we obtain
the estimates below: ∫

ωa≤|ω|≤ωb
ωn|F (ω)|(1− eiψ(ω)) dω < ε

2

Letting I to be the set defined by ωa ≤ |ω| ≤ ωb, we obtain upper bounds for f (n)(t)
as below:
√

2π|f (n)(t)| =

∣∣∣∣∫ ∞
−∞

ωnF (ω)eiωt dω

∣∣∣∣ ≤ ∫ ∞
−∞

ωn|F (ω)| dω

=

∫
|ω|<ωa

ωn|F (ω)| dω +

∫
|ω|>ωb

ωn|F (ω)| dω +

∫
ω∈I

ωn|F (ω)| dω

=
ε

4
+

∫
ω∈I

ωn|F (ω)| dω

We estimate the integral above as∫
ω∈I

ωn|F (ω)| dω =

∣∣∣∣∫
ω∈I

ωn|F (ω)| dω
∣∣∣∣

=

∣∣∣∣∫
ω∈I

ωn|F (ω)|
(

1− eiψ(ω)
)
dω +

∫
ω∈I

ωn|F (ω)|eiψ(ω) dω
∣∣∣∣

≤
∣∣∣∣∫
ω∈I

ωn|F (ω)|
(

1− eiψ(ω)
)
dω

∣∣∣∣+

∣∣∣∣∫
ω∈I

ωn|F (ω)|eiψ(ω) dω
∣∣∣∣

≤ ε

2
+

∣∣∣∣∫
ω∈I

ωn|F (ω)|eiφ0eiψ(ω) dω

∣∣∣∣
≤ ε

2
+

∣∣∣∣∫
ω∈I

ωnF (ω) dω

∣∣∣∣ .
Finally we estimate the last term as∣∣∣∣∫
ω∈I

ωnF (ω) dω

∣∣∣∣ =

∣∣∣∣∣
∫ ∞
−∞

ωnF (ω) dω −
∫
|ω|<ωa

ωnF (ω) dω −
∫
|ω|>ωb

ωnF (ω) dω

∣∣∣∣∣
≤
∣∣∣∣∫ ∞
−∞

ωnF (ω) dω

∣∣∣∣+

∣∣∣∣∣
∫
|ω|<ωa

ωnF (ω) dω

∣∣∣∣∣+

∣∣∣∣∣
∫
|ω|>ωb

ωnF (ω) dω

∣∣∣∣∣
≤
∣∣∣∣∫ ∞
−∞

ωnF (ω) dω

∣∣∣∣+

∫
|ω|<ωa

ωn|F (ω)| dω +

∫
|ω|>ωb

ωn|F (ω)| dω

≤ ε

4
+
√

2π
∣∣∣f (n)(0)

∣∣∣ .
It follows that f (n)(t) ≤ f (n)(0) + ε hence as t = 0 is the critical point. �

The sequence ωn can be obtained by maximizing ωn|F (ω)|, i.e, by equating its
first derivative to zero. We present in Fig. 6, a graphical display of the corresponding
equality ω/n = F (ω)/F ′(ω) for the standard logistic growth. The comparison of the
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Figure 6. Graphical solution of the equation ω/n = F (ω)/F ′(ω)
for the standard logistic growth.
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higher derivatives with sinusoids of frequency ωn modulating the amplitude of the
corresponding analytical representation are shown in Fig. 7.
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3.2. The existence of the critical point: Odd sigmoidal curves

In this section we will prove the existence of the critical point of an odd sigmoidal
curve under a different set of assumptions. We first prove that the odd derivatives of
an odd sigmoidal function y(t) reach their global extreme values at t = 0 (Proposition
3.4). Then we prove that the global extreme value of the even derivatives of y(t) is
the local extreme value that is closest to t = 0 (Proposition 3.5) and the sequence of
points where the even derivatives of y(t) reach their global extreme values converge
to t = 0 (Corollary 3.6). The time domain plots and the magnitude of the Fourier
and Hilbert transforms of the standard logistic growth are displayed in Fig. 8.
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Figure 8. Normalized graphs of the time domain variations, the
magnitude of the Fourier transform and the magnitude of the ana-
lytic representation for y(t), y(4)(t) and y(8)(t). As the order of dif-
ferentiation increases, the time domain pulses get narrower while the
frequency spectrum spreads out.

The simplest property that has to be proved is the fact that if f(t) is an even,
the local extremum at t = 0 is the global one. We prove this by requiring the “mono-
tonicity” of the envelope of y(n)(t), expressed in terms of its analytic representation.

Proposition 3.4. Let f(t) be a real, even function and assume that that the magnitude
of its analytical representation |fA(t)| has a single local maximum. Then

|f(t)| ≤ |f(0)|.

Proof. Recall that fA(t) = f(t) + ifh(t), where fh(t) is the Hilbert transform of f(t).
Since f2A(t) = f2(t) + f2h(t), |f(t)| ≤ |fA(t)|. When f(t) is even, fh(t) is odd, hence,
f(0) = fA(0). Since |fA(t)| is monotone decreasing, |f(t)| ≤ |fA(0)| = |f(0)|. �
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We next prove that the global extremum of the even derivatives of an odd sig-
moidal curve is the one closest to t = 0.

Proposition 3.5. Let f(t) be a real, odd function such that the magnitude of its ana-
lytical representation |fA(t)| has a single local maximum. Then |f(t)| ≤ |f(t0)| where
t0 is the location of the first local extremum of f(t) for t > 0.

Proof. Since f(t) is odd, f(0) = 0. For simplicity assume that f ′(0) > 0. Let t1 be
the first zero of f(t) for t > 0. By the alternation of roots, there is a point t2 < t1 at
which f(t2) = |fA(t2)| and since |fA(t)| is decreasing, f(t) is reaching its first local
maximum at some t0 < t2. It follows that |f(t)| < |f(t0)|. �

Finally we prove that the global extreme values of the derivatives converge to

t = 0, i.e, there is no gap between the maximum of |y(2k)A (t)| and the global extremum

of y(2k)(t).

Corollary 3.6. Let y(t) be an odd sigmoidal function and assume that for each n,∣∣∣y(n)A (t)
∣∣∣ has a single local maximum. Then t = 0 is the limit point of the global

extreme values of y(2k)(t).

Proof. For n = 2k + 1, Proposition 3.4 implies that the global extremum is at t = 0.
For n = 2k, we will prove that the global extremum of y(2k+2) occurs earlier than the
global extremum of y(2k). By Proposition 3.5 above, the global extremum is the first
local extremum. Let y(2k)(0) = 0, assume that y(2k+1)(0) > 0 and let t1 be the first

intersection of y(2k) with its envelope, y(2k)(t1) =
∣∣∣y(2k)A (t1)

∣∣∣. The global extreme value

of y(2k) is at some t2 < t1, since the envelope is decreasing. Then, y(2k+1)(t2) = 0,

y
(2k+1)
h (t2) is tangent to the envelope, hence it has its global extremum at t3 < t2.

Finally, y
(2k+2)
h (t3) = 0, hence y(2k+2)(t) is tangent to the envelope at this point and

it has its global extremum at some t4 < t3. Hence the global extreme values form a
decreasing sequence that converge to t = 0. �

Typical examples of the even and odd derivatives of the standard logistic growth
and their envelopes are presented in Fig. 9, as to illustrate how the proofs work.

For the case with no symmetry, we again need to assume that |y(n)A (t)| has a
single maximum, but the location of this maximum, that we denote as tn,∗ changes

with n. The comparison of |y(n)A (t)| for sigmoidal curves with and without symmetry
is given in Fig. 10.

Appendix A. The Fourier and Hilbert transforms

The Fourier transform: The Fourier transform of a function f(t), F(f) = F (ω) is
defined as

F (ω) =
1√
2π

∫ ∞
−∞

f(t) e−iωt dt,
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Figure 9. The envelope of the 10th (a) and of 11th (b) derivative
of the standard logistic growth function.
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Figure 10. Envelopes of normalized derivatives up to order 15: The
standard logistic growth function (a) and generalized logistic growth
function with β = 2, k = 1, ν = 1/5 (b).

provided that the integral exists in the sense of Cauchy principal value [8]. If f(t) is
in L1, then its Fourier transform exists. Since a sigmoidal function is finite as t→∞,
its first derivative is in L1. We can recover f(t) from the inverse transform by

f(t) =
1√
2π

∫ ∞
−∞

F (ω) eiωt dω.

The Fourier transform of the odd sigmoidal function exists in the sense of Cauchy
principal value.

The Hilbert transform and the analytic representation: For our purposes, the simplest
description of the Hilbert transform is given by its relation to the Fourier transform
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[7]. Given f(t) and its Fourier transform F (ω), we define the function FA(ω) by

FA(ω) =

{
2F (ω) , ω > 0

0 , ω < 0
.

The inverse transform is a complex function that is called the “analytic represen-
tation” fA(t) of f(t). The imaginary part of fA(t) is the Hilbert transform fh(t) of
f(t).

fA(t) = f(t) + ifh(t) =

√
2

π

∫ ∞
0

F (ω) eiωt dω.

The existence of the Hilbert transform necessitates that f(t) be in Lp for 1 < p <∞;
for L1 functions, it exists in L1,weak ([10], Lemma V.2.8).

Symmetry properties: The property, F
(
f(t)

)
= F (−ω) implies that if f(t) is real

then F (−ω) = F (ω). Thus if f(t) is real, F (ω) will be real provided that F (−ω) =
F (ω). The scaling property f(at)→ 1

|a|F
(
ω
a

)
implies that f(−t)→ F (−ω), hence if

f(t) is real and even, then F (ω) is real and even. Similarly, if f(t) is real and odd,
then F (ω) is pure imaginary and odd. We note that if f(t) is even (odd), its Hilbert
transform is odd (even).

Differentiation: The effect of differentiation in the time domain is multiplication by
iω in the frequency domain. Thus

f (n)(t)→ (iω)nF (ω).

Convolution and modulation: There is a correspondence between products and con-
volutions in the time and frequency domains; multiplication in the time domain leads
to convolution in the frequency domain, i.e,

f(t) g(t)→ 1√
2π

F (ω) ∗G(ω).

The “modulation” of a low frequency signal in the time domain is the multiplication
of this signal by a sinusoidal function of fixed (usually high) angular frequency ω0.
In the frequency domain, the Fourier transform of the low frequency function is con-
volved with the Fourier transform of the sinusoid. The Fourier transform of a pure
sinusoid is not defined in the usual sense, but it is represented as the Dirac δ functions
occurring at ±ω0 and convolution carries the spectrum of the low frequency signal
to the frequencies ±ω0. Since the Fourier transform of a complex exponential is a
δ-function, we have the correspondence below:

f(t)eiω0t → F (ω − ω0).

Time shift: As an analogue of multiplication with a complex exponential in the time
domain, the multiplication of a function in the frequency domain by a linear phase
factor leads to a shift in the time domain:

e−iαωF (ω)→ f(t− α).
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