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Abstract. We give a local convergence analysis for an eighth-order convergent
method in order to approximate a locally unique solution of nonlinear equation
for Banach space valued operators. In contrast to the earlier studies using hy-
potheses up to the seventh Fréchet-derivative, we only use hypotheses on the
first-order Fréchet-derivative and Lipschitz constants. Therefore, we not only ex-
pand the applicability of these methods but also provide the computable radius of
convergence of these methods. Finally, numerical examples show that our results
apply to solve those nonlinear equations but earlier results cannot be used.
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1. Introduction

One of the most basic and important problems in Numerical Analysis concerns
with approximating a locally unique solution x∗ of the equation of the form

F (x) = 0, (1.1)

where F : D ⊂ X → Y is a Fréchet-differentiable operator, X, Y are Banach spaces
and D is a convex subset of X. Let us also denote L(X, Y) as the space of bounded
linear operators from X to Y.

Approximating x∗ is very important, since numerous problems can be reduced
to equation (1.1) using mathematical modeling [4, 7, 12, 9, 16, 21, 23, 24]. However, it
is not always possible to find the solution x∗ in a closed form. Therefore, most of the
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methods are iterative to solve such type of problems. The convergence analysis of iter-
ative methods is usually divided into two categories: semi-local and local convergence
analysis. The semi-local convergence matter is, based on the information around an
initial point, to give criteria ensuring the convergence of iteration procedures. A very
important problem in the study of iterative procedures is the convergence domain.
Therefore, it is very important to propose the radius of convergence of the iterative
methods.

We study the local convergence of the three step eighth-order convergent method
defined for each n = 0, 1 2, . . . by

yn = xn − F ′(xn)−1F (xn),

zn = φ(xn, F (xn), F ′(xn), F ′(yn),

xn+1 = zn − βA−1n F (zn),

(1.2)

where x0 ∈ D is an initial point, for α, β ∈ S, An = (β − α)F ′(xn) + αF ′(yn), (S =
R or S = C) and the second sub step represents any iterative method, in which the
order of convergence is at least m = 1, 2, 3, . . . . It was shown in [9] using Taylor
series expansions when X = Y = R that method (1.2) is of order at least 2m, if m < 3
and of order at least m + 3, if m ≥ 3 provided that F is eighth times differentiable.
The hypotheses on the derivatives of F restrict the applicability of method (1.2). As
a motivational example, define function F on X = Y = R, D = [− 3

2 ,
1
2 ] by

F (x) =

{
x3lnx2 + x5 − x4, x 6= 0,
0, x = 0.

Then, we have that

F ′(x) = 3x2lnx2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6xlnx2 + 20x3 − 12x2 + 10x

and

F ′′′(x) = 6lnx2 + 60x2 − 24x+ 22.

Then, obviously the third-order derivative of the involved function F ′′′(x) is not
bounded on D. Notice that, in particular there is a plethora of iterative methods
for approximating solutions of nonlinear equations [2, 1, 3, 4, 5, 7, 8, 6, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. These results show that initial guess should
be close to the required root for the convergence of the corresponding methods. But,
how close initial guess should be required for the convergence of the corresponding
method? These local results give no information on the radius of the ball convergence
for the corresponding method. We address this question for method (1.2) in the next
section 2.

In the present study, we expand the applicability of method (1.2) by using only
hypotheses on the first-order derivative of function F and generalized Lipschitz con-
ditions. Moreover, we we will avoid to use Taylor series expansions and use Lipschitz
parameters. In this way, there is no need to use the higher-order derivatives to show
the convergence of the scheme (1.2).
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The rest of the paper is organized as follows: in section 2 contains the local con-
vergence analysis of method (1.2). The numerical examples appear in the concluding
Section 3.

2. Local convergence

The local convergence uses some scalars functions and parameters. Let
v, w0, w, ḡ2 : [0, +∞) → [0, +∞) be continuous, increasing functions with
w0(0) = w(0) = 0 and α, β ∈ S. Define parameter r0 by

r0 = sup{t ≥ 0 : w0(t) < 1}. (2.1)

Moreover, define functions g1, h1, p and hp on the interval [0, r0) by

g1(t) =

∫ 1

0
w((1− θ)t)dθ
1− w0(t)

,

h1 = g1(t)− 1,

p(t) = |β|−1[|β − α|w0(t) + |α|w0(g1(t)t)], β 6= 0,

and
hp = p(t)− 1.

We have by (2.2) that h1(0) = hp(0) = −1 < 0 and h1(t) → +∞, hq(t) → +∞ as
t→ r−0 . Then, by the intermediate value theorem, we know that the functions h1 and
hp have zeros in the interval (0, r0). Denote by r1 and rp, respectively the smallest
such zeros of the function h1 and hp. Furthermore, define functions g2 and h2 on the
interval (0, r0) by

g2(t) = ḡ2(t)tm−1,

and
h2(t) = g2(t)− 1.

Suppose that
ḡ2(0) < 1, if m = 1 (2.2)

and
g2(t)→ a a number greater than one or +∞ (2.3)

as t→ r̄−0 for some r̄0 ≤ r0. Then, we have again by the intermediate value theorem
that function h2 has zeros in the interval (0, r̄0). Denote by r2 the smallest such zero.
Notice that, if m > 1 condition (2.2) is not needed to show h2(0) < 0, since in this
case h2(0) = g2(0) − 1 = 0 − 1 = −1 < 0. Finally, define functions g3 and h3 on the
interval [0, r̄p) by r̄p = min{rp, r2},

g3(t) =

(
1 +

∫ 1

0
v(θg2(t)t)dθ

1− p(t)

)
g2(t),

and
h3(t) = g3(t)− 1.

Suppose that
(1 + v(0))ḡ2(0) < 1, if m = 1, (2.4)
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we get by (2.4) that h3(0) = (1 + v(0))ḡ2(0) − 1 < 0 and h3(t) → +∞ or positive
number as t → r̄−p . Denote by r3 the smallest zero of function h3 in the interval
(0, rp). Define the radius of convergence r by

r = min{r1, r3}. (2.5)

Then, we have that for each t ∈ [0, r)

0 ≤ gi(t) < 1, i = 1, 2, 3. (2.6)

Let U(z, ρ), Ū(z, ρ), stand respectively for the open and closed balls in X with center
z ∈ X and of radius ρ > 0. Next, we present the local convergence analysis of method
(1.2) using the preceding notations.

Theorem 2.1. Let F : D ⊆ X → Y be a continuously Fréchet-differentiable operator.
Let v, w0, w, ḡ2 : [0, ∞)→ [0, ∞) be increasing continuous functions with w0(0) =
w(0) = 0 and let r0 ∈ [0, ∞), α ∈ S, β ∈ S − {0}, m ≥ 1 and r0 be defined by (2.1)
so that (2.1) and (2.2) are satisfied. Suppose that there exists x∗ ∈ D such that for
each x ∈ D parameter r0 be defined by (2.1).

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y, X) (2.7)

and

‖F ′(x∗)−1(F ′(x)− F ′(x∗)‖ ≤ w0(‖x− x∗‖). (2.8)

Moreover, suppose that for each x, y ∈ D0 := D ∩ U(x∗, r0)

‖F ′(x∗)−1
(
F ′(x)− F ′(y)

)
‖ ≤ w(‖x− y‖), (2.9)

‖F ′(x∗)−1F ′(x)‖ ≤ v(‖x− x∗‖), (2.10)

‖φ(x, F (x), F ′(x), F ′(y))‖ ≤ ḡ2(‖x− x∗‖)‖x− x∗‖m (2.11)

and

Ū(x∗, r) ⊆ D, (2.12)

where the radius of convergence r is defined by (2.3). Then, sequence {xn} generated
for x0 ∈ U(x∗, r) − {x∗} by method (1.2) is well defined, remains in U(x∗, r) for
each n = 0, 1, 2, . . . and converges to x∗. Moreover, the following estimates hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (2.13)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (2.14)

and

‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.15)

where the functions gi, i = 1, 2, 3 are defined above the Theorem. Furthermore, if∫ 1

0

w0(θR)dθ < 1, for R ≥ r, (2.16)

then the point x∗ is the only solution of equation F (x) = 0 in D1 := D ∩ Ū(x∗, R).
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Proof. We shall show using mathematical induction that the sequences {xn} is well
defined in U(x∗, r) and converges to x∗. By the hypothesis x0 ∈ U(x∗, r) − {x∗},
(2.1), (2.3) and (2.10), we have that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ w0(‖x0 − x∗‖) < w0(r) < 1. (2.17)

In view of (2.17) and the Banach Lemma on invertible operators [4, 7] that F ′(x0)−1 ∈
L(Y, X), y0 is well defined by the first two sub steps of method (1.2) and

‖F ′(x0)−1F ′(x∗)‖ ≤ 1

1− w0(‖x0 − x∗‖)
· (2.18)

We get by (2.1), (2.5), (2.6) (for i = 1), (2.7) and (2.18) that

‖y0 − x∗‖ = ‖(x0 − x∗ − F ′(x0)−1F (x0))‖

≤ ‖F ′(x0)−1F (x∗)‖
∥∥∥∥ ∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))

− F ′(x0))(x0 − x∗)dθ
∥∥∥∥

≤
∫ 1

0
w((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖

1− w0(‖x0 − x∗‖)
≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(2.19)

which implies (2.13) for n = 0 and y0 ∈ U(x∗, r). By (2.5), (2.6) (for i = 2) and
(2.11), we obtain in turn that

‖z0 − x∗‖ = ‖φ(x0, F (x0), F ′(x0), F ′(y0))‖
≤ ḡ2(‖x0 − x∗‖)‖x0 − x∗‖m

= g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(2.20)

which shows (2.14) for n = 0 and z0 ∈ U(x∗, r). We must show that x1 exists. Using
(2.1), (2.5) and (2.8), we obtain in turn that∥∥(βF ′(x∗))−1 [(β − α)(F ′(x0)− F ′(x∗)) + α(F ′(y0)− F ′(x∗))]

∥∥
≤ |β|−1 [|β − α|w0(‖x0 − x∗‖) + |α|w0(‖y0 − x∗‖)]
≤ |β|−1 [|β − α|w0(‖x0 − x∗‖) + |α|w0(g1(‖x0 − x∗‖)‖x0 − x∗‖)]
= p(‖x0 − x∗‖) ≤ p(r) < 1,

(2.21)
so

‖((β − α)F ′(x0) + αF ′(y0))−1F ′(x∗)‖ ≤ 1

1− p(‖x0 − x∗‖)
· (2.22)
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Then, from the last sub step of method (2.1), (2.5), (2.6) (for i = 3), (2.10), (2.19),
(2.20) and (2.21), we get in turn that

‖x1 − x∗‖ = ‖z0 − x∗‖+ |β|
∫ 1

0

v(θ‖z0 − x∗‖)dθ‖x0 − x∗‖

≤

(
1 +
|β|
∫ 1

0
v(θg2(‖x0 − x∗‖))dθ

|β|(1− p(‖x0 − x∗‖))

)
g2(‖x0 − x∗‖)‖x0 − x∗‖

= g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(2.23)

which shows (2.15) and x1 ∈ U(x∗, r). By simply replacing x0, y0, x1 by xk, yk,
xk+1 in the preceding estimates we arrive at (2.15) and (2.16). Then, in view of the
estimates

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, c = g2(‖x0 − x∗‖) ∈ [0, 1), (2.24)

we deduce that lim
k→∞

xk = x∗ and xk+1 ∈ U(x∗, r). Finally, to show the uniqueness

part, let y∗ ∈ D1 with F (y∗) = 0. Define Q =
∫ 1

0
F ′(x∗ + θ(x∗ − y∗))dθ. Using (2.5)

and (2.12), we get that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤ ‖
∫ 1

0

w0(θ‖y∗ − x∗‖)dθ

≤
∫ 1

0

w0(θR)dθ < 1.

(2.25)

It follows from (2.25) that Q is invertible. Then, in view of the identity

0 = F (x∗)− F (y∗) = Q(x∗ − y∗), (2.26)

we conclude that x∗ = y∗. �

Remark 2.2. (a) It follows from (2.10) that condition (2.12) can be dropped and be
replaced by

v(t) = 1 + w0(t) or v(t) = 1 + w0(r0), (2.27)

since,

‖F ′(x∗)−1
[(
F ′(x)− F ′(x∗)

)
+ F ′(x∗)

]
‖ = 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + w0(‖x− x∗‖)
= 1 + w0(t) for ‖x− x∗‖ ≤ r0.

(2.28)

(b) If the function w0 is strictly increasing, then we can choose

r0 = w−10 (1) (2.29)

instead of (2.1).
(c) If w0, w, v are constants functions (the proof of Theorem 2.1 goes through

too in this case), then

r1 =
2

2w0 + w
(2.30)

and
r ≤ r1. (2.31)
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Therefore, the radius of convergence r can be larger than the radius of convergence
r1 for Newton’s method

xn+1 = xn − F ′(xn)−1F (xn). (2.32)

Notice also that the earlier radius of convergence given independently by Rheindoldt
[22] and Traub [24] is

rTR =
2

3w1
(2.33)

and by Argyros [4, 7]

rA =
2

2w0 + w1
, (2.34)

where w1 is the Lipschitz constant for (2.6) on D. But, we have

w ≤ w1, w0 ≤ w1, (2.35)

so

rTR ≤ rA ≤ r1 (2.36)

and
rTR

rA
→ 1

3
as

w0

w
→ 0. (2.37)

The radius of convergence q used in [9] is smaller than the radius rDS given by Dennis
and Schabel [4]

q < rSD =
1

2w1
< rTR. (2.38)

However, q can not be computed using the Lipschitz constants.
(d) The results obtained here can be used for operators F satisfying the au-

tonomous differential equation [4, 7] of the form

F ′(x) = P (F (x)) (2.39)

where P is a known continuous operator. Since F ′(x∗) = P (F (x∗)) = P (0), we
can apply the results without actually knowing the solution x∗. Let as an example
F (x) = ex − 1. Then, we can choose P (x) = x+ 1.

(e) Let us show how to choose functions φ, ḡ2, g2 and m. In addition, we assume
that X = Y = R. Define function φ on R4 by

φ(xn, F (xn), F ′(xn), F ′(yn)) = yn − F ′(yn)−1F (yn). (2.40)

Then, we can choose

g2(t) =

∫ 1

0
w((1− θ)g1(t)t)dθg1(t)

1− w0(g1(t)t)
. (2.41)

If w0, w, v are given in particular by w0(t) = L0t, w(t) = Lt and v(t) =< for some
L > 0, L > 0 and M ≥ 1, then we have that

ḡ2(t) =

L2

8(1−L0t)2

1− L0Lt2

2(1−L0t)

,

g2(t) = ḡ2(t)t3 and m = 4.

(2.42)
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(f) If β = 0, we can obtain the results for the two-step method

yn = xn − F ′(xn)−1F (xn),

xn+1 = φ(xn, F (xn), F ′(xn), F ′(yn))
(2.43)

by setting zn = xn+1 in Theorem 2.1.

3. Numerical examples and applications

In this section, we shall demonstrate the theoretical results which we have pro-
posed in the section 2. Therefore, we consider four numerical examples in this section,
which are defined as follows:

Example 3.1. Let X = Y = C[0, 1] and consider the nonlinear integral equation of
the mixed Hammerstein-type [13, 16], defined by

x(s) =

∫ 1

0

G(s, t)

(
x(t)

3
2 +

x(t)2

2

)
dt (3.1)

where the kernel G is the Green’s function defined on the interval [0, 1]× [0, 1] by

F (s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

(3.2)

The solution x∗(s) = 0 is the same as the solution of equation (1.1), where F :⊆
C[0, 1]→ C[0, 1] defined by

F (x)(s) = x(s)−
∫ t

0

G(s, t)

(
x(t)

3
2 +

x(t)2

2

)
dt. (3.3)

Notice that ∥∥∥∥∫ t

0

G(s, t)dt

∥∥∥∥ ≤ 1

8
· (3.4)

Then, we have that

F ′(x)y(s) = y(s)−
∫ t

0

G(s, t)

(
3

2
x(t)

1
2 + x(t)

)
dt,

so since F ′(x∗(s)) = I,∥∥F ′(x∗)−1(F ′(x)− F ′(y)
)∥∥ ≤ 1

8

(
3

2
‖x− y‖ 1

2 + ‖x− y‖
)
. (3.5)

Therefore, we can choose

w0(t) = w(t) =
1

8

(
3

2
t
1
2 + t

)
and by Remark 2.2(a)

v(t) = 1 + w0(t).

The results in [16, 9] can not be used to solve this problem, since F ′ is not Lipschitz.
However, our results can apply.
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Example 3.2. Suppose that the motion of an object in three dimensions is governed
by system of differential equations

f ′1(x)− f1(x)− 1 = 0

f ′2(y)− (e− 1)y − 1 = 0

f ′3(z)− 1 = 0

(3.6)

with x, y, z ∈ Ω for f1(0) = f2(0) = f3(0) = 0. then, the solution of the system is
given for w = (x, y, z)T by function F := (f1, f2, f3) : Ω→ R3 defined by

F (v) =

(
ex − 1,

e− 1

2
y2 + y, z

)T

. (3.7)

Then the Fréchet-derivative is given by

F ′(v) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Then, we have that w0(t) = L0t, w(t) = Lt, w1(t) = L1t, w0 = L0, w1 = L1 and

v(t) = M , where L0 = e − 1 < L = e
1

L0 = 1.789572397, L1 = e and M = e
1

L0 =
1.7896. Then, we get

r = 0.0039782.

Example 3.3. Let A1 = A2 = C[0, 1], be the space of continuous functions defined
on the interval [0, 1] and be equipped with max norm. Let Ω = Ū(0, 1) and B(x) =
F ′′(x) for each x ∈ Ω. Define F on Ω

F (ϕ)(x) = φ(x)− 5

∫ 1

0

xθϕ(θ)3dθ. (3.8)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ Ω. (3.9)

Then, we have that x∗ = 0, L0 = 7.5, L1 = L = 15 and M = 2. Using method (1.2)
for w0(t) = L0t, v(t) = 2 = M, w(t) = Lt, w1 = L and w0 = L0, we get

r = 0.0013404.

Example 3.4. Returning back to the motivation example at the introduction on this
paper, we have L = L0 = 96.662907 and M = 2. Using method (1.2) for w0(t) =
L0t, v(t) = 2 = M, w(t) = Lt, w1(t) = L and w0 = L0, we can choose

r = 0.00085.
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