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A’-statistical convergence and its application
to Korovkin second theorem

Valdete Loku and Naim L. Braha

Abstract. In this paper, we use the notion of strong (N, A\?)—summability to
generalize the concept of statistical convergence. We call this new method a
A2 —statistical convergence and denote by S,z the set of sequences which are
\? —statistically convergent. We find its relation to statistical convergence and
strong (I, )\Q)fsummability. We will define a new sequence space and will show
that it is Banach space. Also we will prove the second Korovkin type approxi-
mation theorem for A2-statistically summability and the rate of A%-statistically
summability of a sequence of positive linear operators defined from Ca-(R) into

Car(R).
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Keywords: A?—weighted statistical convergence, Korovkin type theorem, rate of
convergence.

1. Introduction

By w, we denote the space of all real or complex valued sequences. If z € w, then
we simply write z = (xy) instead of x = (x)72 ;. Let A = {\; : £k =0,1,...} be a
nondecreasing sequence of positive numbers tending to co, as k — oo and A2\, > 0,
for each n € N. The first difference is defined as follows: A\, = A\x — Ap_1, wWhere
A_1 = A_5 =0, and the second difference is defined as

Az(/\k) = A(A()\k)) = )\k - 2/\k—1 + )\k_g.
Let © = (z1) be a sequence of complex numbers, such that x_; = z_s = 0. We will

denote by

n

Z ()\kl'k — 2X\p_1Tp_1 + )\k_gl‘k_g). (11)
k=0

1

Az(z) =T =
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A sequence z = (z1), is said to be strongly (N, A2)— summable to a number L
(see [8]) if

. 1
lim SV Z |( Ak — 22X\ 12k—1 + Ag—22k—2) — L| = 0.
n n — \n—1 k=0
Let us denote by
[N, \?] = {x = (z,): 3L € C,

. 1
lim ————— |(Ae — 2A—1Tp—1 + Ap—2Tp—2) — L| = 0}
n—00 A\, — Ap—1 pt

for the sets of sequences © = (x,) which are strongly (N, \?) summable to L, i.e.,
2 — L[N, \?]. The idea of statistical convergence was introduced by Fast [12] and
studied by various authors (see [10], [13], [20], [5], [6]). A sequence z = (x) is said to
be statistically convergent to the number L if for every € > 0,

1
lim—[{k <n:|axp—L| >e}| =0,
non

where the vertical bars indicate the number of elements in the enclosed set. In this
case, we write S — lim, 2z = L or 2, — L(S) and S denotes the set of all statis-
tically convergent sequences. In this paper, we introduce and study the concept of
A? —statistical convergence and determine how it is related to [N, A\?] and S.

Definition 1.1. A sequence r = (x,,) is said to be \%2—statistically convergent or

Sy2—convergent to L if for every € > 0

1
lim ————[{k <n: [(Aezr — 2M—1Tk—1 + Ap—22k—2) — L| > €}| = 0.
1

n An — An—
In this case we write Sy2 — lim, z, = L or x,, = L(S)2), and
Sy ={x=(x,):3L € C,S\2 —limz, = L}.

Definition 1.2. A sequence x = (z,,) is said to be A2 —statistically Cauchy if for every
€ > 0 exists a number N = N(g), such that

tin s [{k < n < [A% () — AAw(en)| 2 ¢} =0,
n n — An—1

A sequence of positive integers § = (k,) is called lacunary if kg = 0,0 < k, < k41

and h, = k. — k,_1 — o0 as r — oo. And with I, we will denote the following

interval:I,, = (k,_1, k.|, respectively ¢, the ration: kk—il

Definition 1.3. A sequence x = (z,,) is said to be lacunary \?—statistically convergent
or S§2 —convergent to L if for every € > 0

1
lim = [{k € I & [(Akw = 2\e-12ph-1 + My2@p2) = L] 2 e} = 0.

In this case we write Sf\z — lim, 2, = L or xz,, — L(Sf\z), and

S§2 = {gj = (xn) :dL € C,Sf\z —limz, = L}
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Definition 1.4. A sequence x = (x,,) is said to be lacunary A\%—statistically Cauchy if
for every € > 0 exists a number N = N (¢), such that

limhi {{k el : |A2/\k(m) — AQ)\N(JC)| > EH =0.

2. Some properties of [V, \?] and S):
In this section we will show relation between [N, A?] and Sy:.

Theorem 2.1. Let (\,) be a sequence from A, then:

1. @, — L[N, 2], then x,, — L(Sx2) and the inclusion is proper.
2. If A’X\(z) € lo and x, — L(S\2), then z,, — L[N, \2].
3. Sx:Nls = [N, A2 Nl

Proof. (1) Let us suppose that z,, — L[N, \?]. Then for every & > 0 we have:

n

Z |(Aer — 2A—1Tk—1 + Ap—2Tp—2) — L]
k=1
> Z Ak — 2Mp—1Tk—1 + Ap—2Tr—2) — L]
k=1
[(Apzp—2 g —1Tk—1+A—2Tp—2)—L|>e
>el{k <n:|(Apxr — 2 p—12p—1 + Ag—22k—2) — L| > €}|.

Therefore x, — L[N, \?] = x, — L(Sx2). To prove the second part of the (1), we
will show this.

Example 2.2. Let © = x,, defined as follows:

{ [\//\n_)\n—l]a 0<k<n
Ty =

0, otherwise.

Then z = (z,,) ¢ lo and for every € > 0, we get that

. 1
lim W {E <n:|(Aewe — 20—12k—1 + Ap—2zk—2) — 0] > &}
. [ )\n - )\n—l]
<lim—~Y—— "= =9(.
o 17Iln )\n - /\n—l 0

On the other hand

n

. 1
lim —— Z |()\kxk —2X\k1Tp_1 + )\kfz.%'kfg) — 0|
k=1

n—00 \p — A1

li An[\/ An - )\n—l] - 2)\71—1[ /\n—l - An—2] + )\n—Q[ /\n—Q - An—3]
= [1m = Q.
n An = 2Xn—1 + A2
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(2) Let us suppose that x,, — L(Sy2) and A%\(x) € I, then we can consider that
[Aezr — 2M\k—1Tk—1 + Ap—22k—2 — L| < M.

For any given € > 0 we get the following estimation:

1 n
Y A — 2X\k—1Tp—1 + Ag—2Tk—2) — L
)\n_)\nilkz::lK KTk k—1Tk—1 + Ag—2Tk_2) |
= : i (A 2\ +A )= L|
I e kZk k—1Tk—1 k—2Tk—2
|(Ab@h—2M— 1@k 1+ Ap—amr_z)—L|>e
1 n
3T 3 . A — 2M—1Tj—1 + Ag—2Xf—2) — L
+)\n_)\n71 k; |k k—1Tk—1 + Ag—2Tk—2) — L]
\(/\kfﬂk*2>\k71rk7_1+>\k72m;€,2)7L|§5
< Hk <n [(Axk — 20101 + A—2mp—2) — L] > e}| + ¢,
)\n - >\n—1
which implies that x; — L[N, \2].
(3) Follows immediately from (1) and (2). O

Proposition 2.3. If z = (z,,) is \2—statistically convergent to L, then it follows that
x is N2 —statistically Cauchy sequence.

Proof. Let us suppose that = converges A%2—statistically to L and £ > 0. Then
1

An — An—1

satisfies for almost all k, and if N is chosen such that
1

AN —AN-1

‘{k <n:|(Apzk — 2Ap—12k—1 + Ag—2xr—2) — L| > €}| <

H{k < N:|(Anvazn —2AN-1ZN-1 + AN—22Nn_2) — L| > e}| <
then we have:

1
T [ [An) — A% ()| 2 ) < S+ 5 =<

for almost k. Hence x is A\?—statistically Cauchy sequence. 0

Proposition 2.4. If x = (x,,) is lacunary \*—statistically convergent to L, then it
follows that x is \>—statistically lacunary Cauchy sequence.

Proposition 2.5. If x = (,,) is a sequence for which there is a \>—statistically conver-
gent sequence y = (y,) such that A?X(xy) = A2X(yx) for almost all k, then it follows
that = is A2—statistically convergent sequence.

Proof. Let us consider that A%X(z;) = A2X\(yx) for almost all k. And yx — L(S)2).
Then for each € > 0 and for every n we have:

{k<n: |A2\(xy,) — L] > e}
C{k<n:A*A(xp) # A%Aye) F U {k <n:|A*X(yp) — L] > €}
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From fact that y, — L(S\z2), it follows that set {k < n: |[A%X(yx) — L| > ¢} has finite
numbers which are not depended from n, hence

[{k<n:|A2X(ye) — L| > €}

An — An—1
On the other hand, from A?X(z;) = A%Z\(y,) for almost all k, we get:
Hk <n: A2XN(m) # A%\ (yg) > €}|

— 0,n — oo.

— 0,n — oo.
/\n - >\n—1
From last two relations follows that:
k<n:|A%Xag)—L| >
H snl (k) = }|—>07n—>oo. O
/\n - )\n—l
Proposition 2.6. If * = (x,) is a sequence for which there is a lacunary

A2 —statistically convergent sequence y = (yn) such that A?X(xr) = A%X(yx) for al-
most all k, then it follows that © is lacunary A>—statistically convergent sequence.

Theorem 2.7. Let 6 be a lacunary sequence, then
1. L(Sx2) C L(5%,) if and only if lim, inf ¢, > 1.
2. L(S%:) C L(S»2) if and only if lim, sup ¢, < oo.
3. L(Sy2) = L(Sf\z) if and only if 1 < lim,. inf ¢, < lim,. sup ¢, < c©.

Proof. Proof of the Proposition is omitted, because it is similar to Lemmas 2,3 in
[14]. O

We will denote by A?>(X) = {z = (z,) € w : A%(x) € X}. It is know that
(A%(X), ]| - [|a2(x)) is a normed space where norm is given by (see [8]):

1 n
|[z][a2(x) :== sup W — Z [AMeZk — 2Ap—1Tk—1 + Ap—2Tk—2],
" k=0

where & = (xp).
Theorem 2.8. A%(X) is Banach space.

Proof. Let (z,,) be any Cauchy sequence in A?(X), where 2° = (2,25, ,z5,--+).
Then there it follows that:

|| — 2'||x2(x) = 0, 8,t = o0,
From last relation we get:
SUp A= )\ Z |/\k — @) = 2\ 12y = Th_y) + M2 (Tfs — 372—2)‘ — 0,
n>0 — A\n—1

t, s — 00.

Hence we obtain,
rh — x| = 0,t,5 — oo,
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for every k € N. Therefore (x}c, xi, -+ +) is a Cauchy sequences in C, the set of complex
numbers. Since C is complete, it is convergent. Let us say

lign x5 = Tk,

for every k € N. Since (2*) is a Cauchy sequence, for each & > 0, there exists a natural
number N = N (e) such that

||.Z’S — a’:tHAz(X) <€

for all s,t > N and for all kK € N. Hence

Ae(2f — xp) — 2 — A — <,
,Sg%)\ —/\n1z| k( 1) k(25 = Thoy) + A2 (@ — ) _o)| <€

for all s,t > N and for all £ € N. If we pass with limit, in the last relation, when
t — oo, we get:

hmilipo)\ _)\n : ZP‘k _xk ) = 2X1 (7 x2—1)+>\k72($2—2_ﬁc—2)|

1 n
=sup ——— Z | Ak(@h — @) = 2Xe—1 (@) — @p—1) + Me—2(Th_y — Tr—2)| <,
n>0 An = An—1 £=4
for all s > N and for all k¥ € N. This implies that

||33s _-73||A2(X) <eg,

for all s > N, that is 2° — x, as s — 0o where & = (zy,).

Since
1 n
0 ST Dk — 2N 11 + Ao
|| A2 () Sup)\ o 1kZ:O| KTk k—1Tk—1 + Ap_2Tr_2]
1 n
=sup———— > | Me(wx —ap + o) =2\ 1 (zpo1 — 2y + 2y
n>0 An = An—1 =
FA2(Th2 — 2o + T o))
< sup D Ak = 2) = 201 (zho1 — 200) + Me—2 (@2 — 2 ,)]
n>0 An - )\nfl k—0
+ sup Z PYETAESS VIR AR D VPN

An — An—
n>0 nlkO

< le® = allazcx) + e azcx) = O(1),
we obtain z € A?(X). O
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3. A Korovkin second type theorem
We say that the sequence (z,,) is A2— summable to L if lim,, A2 = L.

Definition 3.1. We say that the sequence (z,,) is statistically summable to L by the
weighted method determined by the sequence A? if st — lim, A? = L.

And we denote by A?(st) the set of all sequences which are statistically summable
A2. In the sequel we will use some notation related to the function spaces. With F(R)
we will denote the linear space of all real-valued functions defined in R. And with
C(R) we will denote the space of all bounded and continuous functions defined in R.
Tt is know fact that C'(R) is a Banach space equipped with norm

|| flloo = sup|f(z)], f € C(R).
zeR

The space of all continuous and periodic functions with period 27 we will denote by
Cox(R), which is a Banach space under norm given by

1 fll2r = sup[f(z)].
rz€eR

The classical Korovkin first and second theorems are given as follows (see [16, 17, 3]):
Theorem 3.2. Let (T},) be a sequence of positive linear operators from C[0,1] into
F[0,1]. Then

nh_{I;C | T(f,2) = f(2)]]leo = 0,
for all f € C[0,1] if and only if

T [T, (fe) — ()10 = 0.
for i €{0,1,2} where fo(z) =1, fi(z) =z and fa(z) = 2%
Theorem 3.3. Let (T},) be a sequence of positive linear operators from Cor(R) into
F(R). Then

Tim ([T, (f.2) — (@)l |ar = 0,
for all f € Can(R) if and only if

T ([T (fi2) — fi(@)]|ar = 0.
fori e {0,1,2} where fo(xz) =1, fi(x) = cosz and fo(x) =sinz.

The Korovkin type theorems are investigated by several mathematicians in gen-
eralization of them in many ways and several settings such as function spaces, abstract
Banach latices, Banach algebras, and so on. This theory is useful in real analysis, func-
tional analysis, harmonic analysis, and so on. For more results related to the Korovkin
type theorems see ([4, 11, 19, 21, 22,24, 9, 7, 18, 2, 1, 23, 15]). In this paper we will
prove the second Korovkin-type theorem with the help of A2—statistically summabil-
ity method which is a generalization of that given in [19] and [16, 17].

For given sequence of linear operators L, we say that they are positive if
L,(f(x)) >0 for all f(z) > 0, for given z.
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Theorem 3.4. Let (T},) be a sequence of positive linear operators from Cor(R) into
Cor(R). Then

A?(st)- li_>m |1, (f,x) — f(@)|]2r =0, forall f € C2r(R) (3.1)
if and only if
A*(st)- lim ||T,(fi,z) — fi(@)|[2r =0, i =10,1,2, (3.2)
n—oo
where fo(x) =1, fi(x) = cosx and fy(z) = sinzx.
Proof. Let us consider that relation (3.1) is valid for all f € Cy,(R). Then it is valid
especially for the f(z) = 1, f(z) = cosz and f(z) = sinz, and condition (3.2) is valid.
Now we will prove the contrary. Let us suppose that relations (3.2) is valid and we
will prove that (3.1) is valid, too. Let I = (a,a + 27| any subinterval of length 27
from R. Let us fix € I. By the conditions given for f(x) it follows that:
(Me>0)(30(e) > 0) = |f(t) — f(x)] <&, (3.3)

for all ¢, whenever |t — x| < 4. If |t — 2| > 0. Let us consider that ¢t € (z+ 4,27 +x + 4],
then we get:
2||fl2n

£ = F@)] < 2lfllar < = 25200 (34)

where ¢(t) = sin® (15%). From relations (3.3) and (3.4) for any fixed = € I and for
any t we obtain:

2 x
70— @) < 20y 4 e (35)
2
Respectively,
= 2y < gy - pay < 2y 4 o
Sin 5 Sin §

Applying the operator T, (1, ) in this inequality we have:

Ti(1,2) ( _ 2l (t)) < Tu(1,2) (F(8) = f(2)) < Ti(1,2) (2'.” Pyt +e> .

S Sin

Value of z is fixed, which means that f(z) is a constant and above relation takes this
form:

_ 2l lx

~<T(1,2) — ALEET (40, 0) < Taf, ) — S Tu(1,2)
2
< %Tk(w(t), x) +eTp(1, x). (3.6)
2
On the other hand
Ti(f: ) = f(2) = To(f,2) = f(@)Te(1,2) + f(2) [T (1, 2) - 1]. 3.7)
From relations (3.6) and (3.7) we have:

Tu(f,z) — f(x) < %Tk(w(t),@ +eTp(1,2) + f(x)[Tk(1,2) — 1]. (3.8)
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Let us now estimate the following expression:
) t—x 1 . .
Te(Y(t),2) = T | sin —)r) = Tk 5(1 —costcosx —sintsinz), x
1
=3 {T(1,z) — cosxTi(cost,x) — sinxTk(sint, z)}

= % {[Tx(1,2) — 1]—cos [Tk (cost, x) — cos x] —sin [Ty (sint, z) — sinz]} .

Now, from the last relation and (3.8), we obtain that

Ti(f,z) — f(x) < 28|1|rJ:2H2§7r %{[Tk(l,x) — 1] = cos [Ty (cost, z) — cos x]
2
— sinz[Ty(sint, z) — sin:c]} +eTh(1,2) + f(2)[T(1,2) — 1]
= e elTe(1,2) 1]+ F@T(L2) 1]+ B g2 1)

— cos [T (cost, z) — cosx] — sinz [Tk (sint, ) — sin z] }
Therefore,

[T(5,2) — f@)] << + <s+ @)+ Z'ijfl'i“) Tu(1,2) - 1
2

2
+ Ly?r{|cosx| | Tk (cost,x) — cos z|
in” 2

2
+ |sinz| - |Tk(sint, z) — sinx\}
2 ™
<ot <s+ @)+ 2l ) Te(1,2) =1
S bl
2
+ ||f2‘|§ {|Tk(cost,:c) —cos x| + |Ty(sint, z) — sin:c|}.
sin” &
2

Now taking the sup,.; in the above relation, we get:
Tk (f,2) = f(@)][or < &+ K(I\Tk(l, ) = Ul2x + |[Th(cost, z) — cosz||ax

+ || Tk (sint, x) — sinm||27r>a

where
2 x 2 -
Kmax{wlfim ik 2l }
sin® §  sin” §
Now replacing Tk (., z) by
1 n
AQ(.JS) = m Z(x\ka(.7I) — 221 T—1 () + Ag—2Tk—2(., x))

k=0
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in the above inequality on both sides. For a given r > 0, we can choose €; such that
e1 < r. Now we will define the following sets:

D= {k <N:|IA%(,2) ~ f(@)l]or > 7},

o . 2/ s T—£&1 L
sz{ng.HA (Fir) = fi@)llan > },z 0,1,2.

Then D C U?_,D; and for their densities is satisfied relation:
6(D) < 6(Do) + 6(D1) + 6(D2).
Finally, from relations (3.2) and the above estimation we get:
A%(st)-lim [|A%(F, ) — J(@)][r = 0.

which completes the proof. O

Remark 3.5. If we take \,, = n?, then our Theorem 3.4 reduce to Theorem 2.1 of [19].

4. Rate of A%2— statistically convergence

In this section we will show the rate of the A%2— statistical convergence of positive
linear operators in Ca,(R) spaces.

Definition 4.1. Let (a,,) be any positive, nondecreasing sequence of positive numbers.
We say that sequence x = (x,,) is A2— statistical convergent to number L with rate
of convergence o(ay,), if for every e > 0,

1
lima—|{m <n:|T, —L|l>¢c}| =0.

In this case, we write x,, — L = A%(st) — o(ay).
Lemma 4.2. Let (a,) and (b,) be two positive nondecreasing positive numeric se-
quences. Let x = (,,) and y = (y,) be two sequences such that x,—L; = A?(st)—o(ay)
and y, — Ly = A?(st) — o(by). Then

1. a(z, — L) = A%(st) — o(ay), for any scalar c.

2. (2 — L1) % (yn — La) = A2(st) — o(cy).

3. (xn — L1)(yn — La) = A%(st) — o(anby),
where ¢, = max {an, b, }.

Now let us recall the notion of the modules of continuity. The modulus of con-

tinuity for function f(x) € Ca(R), is defined as follows:

w(f,8) = sup |f(z+h)— f(z)].
|h|<8

It is known that, for any value of the |z — y|, we get:

@)= )l <w(r0) (50 1)) (4.1)
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We have the following result:

Theorem 4.3. Let (T;,) be a sequence of positive linear operators from Car(R) into
Car(R). Suppose that

1 ||T.(1,2) — 1||2r = A2(st) — o(ay).
2. w(f, ) = A%(st) — o(by), where Ny, = \/Ty(ds, ) and ¢ (y) = (y — x)>.
Then for all f € Car(R), we have:

| Tn(f2) = f(2)]]2r = AQ(St) —o(cn),

where ¢, = max {ay, b, }.

Proof. Let f € Cor(R) and x € [—m,n]. From relations (3.7) and (4.1) we get this
estimation:

<1, (5 v 1s)wtr0) + @) 1,000 - 1

(by Cauchy-Schwartz inequality)

< STl — ), ) (T (1) 2(£,6) 4 £ ()| - [Ta(1,2) — 1]

If we are putting § = A\, = \/T,(d, ) in the last relation we obtain:
T (fs2) = f(@)]l2n < (| Fll2nl|Tn (L, 2) = 1|2x + 2w(f, An)
+ (£, AT (1, 2) = 1l2r + w(f, An) VT (1, 2) = 1]|2x

< C{IITn(1,@) = Ulaw + @, An) + @ (AT (L, 2) = 120

+w(f, A VT (L @) = 1lar },
where C' = max {|| f||2x, 2}. Now replacing Tj(.,z) by

n

Z(/\ka(-7 ) = 2X 1 Th—1 (., ) + Ae—2Th—2(., ),
k=0

1

Mo) =5

we get
142(f,2) = f(@)ll2x < C{IIA2(1,2) = 1l[zx +w(F. An) + @ A)IA2(L, 2) = 1|2
+ V(AL 2) — 1lar |-

The proof follows from the conditions (1) and (2). O

In the following example we show that Theorem 3.4 is stronger than Theorem 3.3.

Example 4.4. For any n € N we will denote by S,,(f) the n—th partial sum of the
Fourier series of f, i.e.,
Sn(f) = % + ];ak cos kx + by sin k.
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Let us consider the following expression:

Z (/\k —2X\p_1 + /\k_g)Sk(f).

k=0

We know that lim,, o, A%(f,z) = f (see [8]). Let us denote by L, : Car(R) — Car(R)
defined by:

1

2 —
A (f?x) - )\n_)\nfl

Lo(f.x) = (1 +2n)A*(f,2)
where (z,,) is defined as follow:

{ 1 (n odd) (4.2)

—1 (n even).

After some calculations we have:

A% (1,z) =1,

A?(cost,z) = cos,

A?(sint,z) = sinz.
We see that conditions (3.2) are satisfied, and by Theorem 3.4, it follows that

A% (st)-Tim || Ly (f.2) — fl]ar =0,

but Theorem 3.3 does’t hold.

Remark 4.5. Based in the previous example and Remark 3.5, we show that our Theo-
rem 3.4 is also stronger than Theorem 2.1 due to Mohiuddine and Alotaibi [19].
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