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Λ2-statistical convergence and its application
to Korovkin second theorem
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Abstract. In this paper, we use the notion of strong (N,λ2)−summability to
generalize the concept of statistical convergence. We call this new method a
λ2−statistical convergence and denote by Sλ2 the set of sequences which are
λ2−statistically convergent. We find its relation to statistical convergence and
strong (N,λ2)−summability. We will define a new sequence space and will show
that it is Banach space. Also we will prove the second Korovkin type approxi-
mation theorem for λ2-statistically summability and the rate of λ2-statistically
summability of a sequence of positive linear operators defined from C2π(R) into
C2π(R).

Mathematics Subject Classification (2010): 40G15, 41A36, 46A45.

Keywords: Λ2−weighted statistical convergence, Korovkin type theorem, rate of
convergence.

1. Introduction

By w, we denote the space of all real or complex valued sequences. If x ∈ w, then
we simply write x = (xk) instead of x = (xk)∞k=1. Let Λ = {λk : k = 0, 1, . . .} be a
nondecreasing sequence of positive numbers tending to ∞, as k →∞ and ∆2λn ≥ 0,
for each n ∈ N. The first difference is defined as follows: ∆λk = λk − λk−1, where
λ−1 = λ−2 = 0, and the second difference is defined as

∆2(λk) = ∆(∆(λk)) = λk − 2λk−1 + λk−2.

Let x = (xk) be a sequence of complex numbers, such that x−1 = x−2 = 0. We will
denote by

Λ2(x) =
1

λn − λn−1

n∑
k=0

(λkxk − 2λk−1xk−1 + λk−2xk−2). (1.1)
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A sequence x = (xk), is said to be strongly (N,λ2)− summable to a number L
(see [8]) if

lim
n

1

λn − λn−1

n∑
k=0

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| = 0.

Let us denote by

[N,λ2] =
{
x = (xn) : ∃L ∈ C,

lim
n→∞

1

λn − λn−1

n∑
k=1

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| = 0
}

for the sets of sequences x = (xn) which are strongly (N,λ2) summable to L, i.e.,
xk → L[N,λ2]. The idea of statistical convergence was introduced by Fast [12] and
studied by various authors (see [10], [13], [20], [5], [6]). A sequence x = (xk) is said to
be statistically convergent to the number L if for every ε > 0,

lim
n

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0,

where the vertical bars indicate the number of elements in the enclosed set. In this
case, we write S − limn x = L or xk → L(S) and S denotes the set of all statis-
tically convergent sequences. In this paper, we introduce and study the concept of
λ2−statistical convergence and determine how it is related to [N,λ2] and S.

Definition 1.1. A sequence x = (xn) is said to be λ2−statistically convergent or
Sλ2−convergent to L if for every ε > 0

lim
n

1

λn − λn−1
|{k ≤ n : |(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| ≥ ε}| = 0.

In this case we write Sλ2 − limn xn = L or xn → L(Sλ2), and

Sλ2 = {x = (xn) : ∃L ∈ C, Sλ2 − lim
n
xn = L}.

Definition 1.2. A sequence x = (xn) is said to be λ2−statistically Cauchy if for every
ε > 0 exists a number N = N(ε), such that

lim
n

1

λn − λn−1

∣∣{k ≤ n :
∣∣∆2λk(xk)−∆2λN (xN )

∣∣ ≥ ε}∣∣ = 0.

A sequence of positive integers θ = (kr) is called lacunary if k0 = 0, 0 < kr < kr+1

and hr = kr − kr−1 → ∞ as r → ∞. And with Ir we will denote the following
interval:Ir = (kr−1, kr], respectively qr the ration: kr

kr−1
.

Definition 1.3. A sequence x = (xn) is said to be lacunary λ2−statistically convergent
or Sθλ2−convergent to L if for every ε > 0

lim
r

1

hr
|{k ∈ Ir : |(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| ≥ ε}| = 0.

In this case we write Sθλ2 − limn xn = L or xn → L(Sθλ2), and

Sθλ2 = {x = (xn) : ∃L ∈ C, Sθλ2 − lim
n
xn = L}.
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Definition 1.4. A sequence x = (xn) is said to be lacunary λ2−statistically Cauchy if
for every ε > 0 exists a number N = N(ε), such that

lim
r

1

hr

∣∣{k ∈ Ir :
∣∣∆2λk(x)−∆2λN (x)

∣∣ ≥ ε}∣∣ = 0.

2. Some properties of [N, λ2] and Sλ2

In this section we will show relation between [N,λ2] and Sλ2 .

Theorem 2.1. Let (λn) be a sequence from Λ, then:

1. xn → L[N,λ2], then xn → L(Sλ2) and the inclusion is proper.
2. If ∆2λ(x) ∈ l∞ and xn → L(Sλ2), then xn → L[N,λ2].
3. Sλ2 ∩ l∞ = [N,λ2] ∩ l∞.

Proof. (1) Let us suppose that xn → L[N,λ2]. Then for every ε > 0 we have:

n∑
k=1

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L|

≥
n∑
k=1

|(λkxk−2λk−1xk−1+λk−2xk−2)−L|≥ε

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L|

≥ ε |{k ≤ n : |(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| ≥ ε}| .
Therefore xn → L[N,λ2] ⇒ xn → L(Sλ2). To prove the second part of the (1), we
will show this.

Example 2.2. Let x = xn defined as follows:

xn =

{
[
√
λn − λn−1], 0 ≤ k ≤ n

0, otherwise.

Then x = (xn) /∈ l∞ and for every ε > 0, we get that

lim
n

1

λn − λn−1
|{k ≤ n : |(λkxk − 2λk−1xk−1 + λk−2xk−2)− 0| ≥ ε}|

≤ lim
n

[
√
λn − λn−1]

λn − λn−1
= 0.

On the other hand

lim
n→∞

1

λn − λn−1

n∑
k=1

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− 0|

= lim
n

λn[
√
λn − λn−1]− 2λn−1[

√
λn−1 − λn−2] + λn−2[

√
λn−2 − λn−3]

λn − 2λn−1 + λn−2
=∞.
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(2) Let us suppose that xn → L(Sλ2) and ∆2λ(x) ∈ l∞, then we can consider that

|λkxk − 2λk−1xk−1 + λk−2xk−2 − L| ≤M.

For any given ε > 0 we get the following estimation:

1

λn − λn−1

n∑
k=1

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L|

=
1

λn − λn−1

n∑
k=1

|(λkxk−2λk−1xk−1+λk−2xk−2)−L|≥ε

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L|

+
1

λn − λn−1

n∑
k=1

|(λkxk−2λk−1xk−1+λk−2xk−2)−L|≤ε

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L|

≤ M

λn − λn−1
|{k ≤ n : |(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| ≥ ε}|+ ε,

which implies that xk → L[N,λ2].
(3) Follows immediately from (1) and (2). �

Proposition 2.3. If x = (xn) is λ2−statistically convergent to L, then it follows that
x is λ2−statistically Cauchy sequence.

Proof. Let us suppose that x converges Λ2−statistically to L and ε > 0. Then

1

λn − λn−1
|{k ≤ n : |(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| ≥ ε}| ≤ ε

2

satisfies for almost all k, and if N is chosen such that

1

λN − λN−1
|{k ≤ N : |(λNxN − 2λN−1xN−1 + λN−2xN−2)− L| ≥ ε}| ≤ ε

2
,

then we have:
1

λn − λn−1

∣∣{k ≤ n :
∣∣∆2λk(x)−∆2λN (x)

∣∣ ≥ ε}∣∣ < ε

2
+
ε

2
= ε,

for almost k. Hence x is λ2−statistically Cauchy sequence. �

Proposition 2.4. If x = (xn) is lacunary λ2−statistically convergent to L, then it
follows that x is λ2−statistically lacunary Cauchy sequence.

Proposition 2.5. If x = (xn) is a sequence for which there is a λ2−statistically conver-
gent sequence y = (yn) such that ∆2λ(xk) = ∆2λ(yk) for almost all k, then it follows
that x is λ2−statistically convergent sequence.

Proof. Let us consider that ∆2λ(xk) = ∆2λ(yk) for almost all k. And yk → L(Sλ2).
Then for each ε > 0 and for every n we have:{

k ≤ n : |∆2λ(xk)− L| ≥ ε
}

⊂
{
k ≤ n : ∆2λ(xk) 6= ∆2λ(yk)

}
∪
{
k ≤ n : |∆2λ(yk)− L| ≥ ε

}
.
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From fact that yk → L(Sλ2), it follows that set
{
k ≤ n : |∆2λ(yk)− L| ≥ ε

}
has finite

numbers which are not depended from n, hence∣∣{k ≤ n : |∆2λ(yk)− L| ≥ ε
}∣∣

λn − λn−1
→ 0, n→∞.

On the other hand, from ∆2λ(xk) = ∆2λ(yk) for almost all k, we get:∣∣{k ≤ n : ∆2λ(xk) 6= ∆2λ(yk) ≥ ε
}∣∣

λn − λn−1
→ 0, n→∞.

From last two relations follows that:∣∣{k ≤ n : |∆2λ(xk)− L| ≥ ε
}∣∣

λn − λn−1
→ 0, n→∞. �

Proposition 2.6. If x = (xn) is a sequence for which there is a lacunary
λ2−statistically convergent sequence y = (yn) such that ∆2λ(xk) = ∆2λ(yk) for al-
most all k, then it follows that x is lacunary λ2−statistically convergent sequence.

Theorem 2.7. Let θ be a lacunary sequence, then

1. L(Sλ2) ⊂ L(Sθλ2) if and only if limr inf qr > 1.

2. L(Sθλ2) ⊂ L(Sλ2) if and only if limr sup qr <∞.

3. L(Sλ2) = L(Sθλ2) if and only if 1 < limr inf qr ≤ limr sup qr <∞.

Proof. Proof of the Proposition is omitted, because it is similar to Lemmas 2,3 in
[14]. �

We will denote by Λ2(X) = {x = (xn) ∈ w : Λ2(x) ∈ X}. It is know that
(Λ2(X), || · ||Λ2(X)) is a normed space where norm is given by (see [8]):

||x||Λ2(X) := sup
n≥0

1

λn − λn−1

n∑
k=0

|λkxk − 2λk−1xk−1 + λk−2xk−2|,

where x = (xk).

Theorem 2.8. Λ2(X) is Banach space.

Proof. Let (xn) be any Cauchy sequence in Λ2(X), where xs = (xs1, x
s
2, · · · , xsn, · · · ) .

Then there it follows that:

||xs − xt||Λ2(X) → 0, s, t→∞.

From last relation we get:

sup
n≥0

1

λn − λn−1

n∑
k=0

∣∣λk(xsk − xtk)− 2λk−1(xsk−1 − xtk−1) + λk−2(xsk−2 − xtk−2)
∣∣→ 0,

t, s→∞.
Hence we obtain,

|xtk − xsk| → 0, t, s→∞,
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for every k ∈ N. Therefore (x1
k, x

2
k, · · · ) is a Cauchy sequences in C, the set of complex

numbers. Since C is complete, it is convergent. Let us say

lim
s
xsk = xk,

for every k ∈ N. Since (xs) is a Cauchy sequence, for each ε > 0, there exists a natural
number N = N(ε) such that

||xs − xt||Λ2(X) < ε

for all s, t ≥ N and for all k ∈ N. Hence

sup
n≥0

1

λn − λn−1

n∑
k=0

∣∣λk(xsk − xtk)− 2λk−1(xsk−1 − xtk−1) + λk−2(xsk−2 − xtk−2)
∣∣ < ε,

for all s, t ≥ N and for all k ∈ N. If we pass with limit, in the last relation, when
t→∞, we get:

lim
t

sup
n≥0

1

λn − λn−1

n∑
k=0

∣∣λk(xsk − xtk)− 2λk−1(xsk−1 − xtk−1) + λk−2(xsk−2 − xtk−2)
∣∣

= sup
n≥0

1

λn − λn−1

n∑
k=0

∣∣λk(xsk − xk)− 2λk−1(xsk−1 − xk−1) + λk−2(xsk−2 − xk−2)
∣∣ < ε,

for all s ≥ N and for all k ∈ N. This implies that

||xs − x||Λ2(X) < ε,

for all s ≥ N, that is xs → x, as s→∞ where x = (xk).

Since

||x||Λ2(x) = sup
n≥0

1

λn − λn−1

n∑
k=0

|λkxk − 2λk−1xk−1 + λk−2xk−2|

= sup
n≥0

1

λn − λn−1

n∑
k=0

|λk(xk − xNk + xNk )− 2λk−1(xk−1 − xNk−1 + xNk−1)

+λk−2(xk−2 − xNk−2 + xNk−2)|

≤ sup
n≥0

1

λn − λn−1

n∑
k=0

∣∣λk(xk − xNk )− 2λk−1(xk−1 − xNk−1) + λk−2(xk−2 − xNk−2)
∣∣

+ sup
n≥0

1

λn − λn−1

n∑
k=0

∣∣λkxNk − 2λk−1x
N
k−1 + λk−2x

N
k−2

∣∣
≤ ||xN − x||Λ2(X) + ||xN ||Λ2(X) = O(1),

we obtain x ∈ Λ2(X). �



Λ2-statistical convergence 543

3. A Korovkin second type theorem

We say that the sequence (xn) is Λ2− summable to L if limn Λ2 = L.

Definition 3.1. We say that the sequence (xn) is statistically summable to L by the
weighted method determined by the sequence Λ2 if st− limn Λ2 = L.

And we denote by Λ2(st) the set of all sequences which are statistically summable
Λ2. In the sequel we will use some notation related to the function spaces. With F (R)
we will denote the linear space of all real-valued functions defined in R. And with
C(R) we will denote the space of all bounded and continuous functions defined in R.
It is know fact that C(R) is a Banach space equipped with norm

||f ||∞ = sup
x∈R
|f(x)|, f ∈ C(R).

The space of all continuous and periodic functions with period 2π we will denote by
C2π(R), which is a Banach space under norm given by

||f ||2π = sup
x∈R
|f(x)|.

The classical Korovkin first and second theorems are given as follows (see [16, 17, 3]):

Theorem 3.2. Let (Tn) be a sequence of positive linear operators from C[0, 1] into
F [0, 1]. Then

lim
n→∞

||Tn(f, x)− f(x)||∞ = 0,

for all f ∈ C[0, 1] if and only if

lim
n→∞

||Tn(fi, x)− fi(x)||∞ = 0,

for i ∈ {0, 1, 2} where f0(x) = 1, f1(x) = x and f2(x) = x2.

Theorem 3.3. Let (Tn) be a sequence of positive linear operators from C2π(R) into
F (R). Then

lim
n→∞

||Tn(f, x)− f(x)||2π = 0,

for all f ∈ C2π(R) if and only if

lim
n→∞

||Tn(fi, x)− fi(x)||2π = 0,

for i ∈ {0, 1, 2} where f0(x) = 1, f1(x) = cosx and f2(x) = sinx.

The Korovkin type theorems are investigated by several mathematicians in gen-
eralization of them in many ways and several settings such as function spaces, abstract
Banach latices, Banach algebras, and so on. This theory is useful in real analysis, func-
tional analysis, harmonic analysis, and so on. For more results related to the Korovkin
type theorems see ([4, 11, 19, 21, 22, 24, 9, 7, 18, 2, 1, 23, 15]). In this paper we will
prove the second Korovkin-type theorem with the help of Λ2−statistically summabil-
ity method which is a generalization of that given in [19] and [16, 17].

For given sequence of linear operators Ln we say that they are positive if
Ln(f(x)) ≥ 0 for all f(x) ≥ 0, for given x.
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Theorem 3.4. Let (Tn) be a sequence of positive linear operators from C2π(R) into
C2π(R). Then

Λ2(st)- lim
n→∞

||Tn(f, x)− f(x)||2π = 0, forall f ∈ C2π(R) (3.1)

if and only if

Λ2(st)- lim
n→∞

||Tn(fi, x)− fi(x)||2π = 0, i = 0, 1, 2, (3.2)

where f0(x) = 1, f1(x) = cosx and f2(x) = sinx.

Proof. Let us consider that relation (3.1) is valid for all f ∈ C2π(R). Then it is valid
especially for the f(x) = 1, f(x) = cosx and f(x) = sinx, and condition (3.2) is valid.
Now we will prove the contrary. Let us suppose that relations (3.2) is valid and we
will prove that (3.1) is valid, too. Let I = (a, a + 2π] any subinterval of length 2π
from R. Let us fix x ∈ I. By the conditions given for f(x) it follows that:

(∀ε > 0)(∃δ(ε) > 0)→ |f(t)− f(x)| < ε, (3.3)

for all t, whenever |t−x| < δ. If |t−x| ≥ δ. Let us consider that t ∈ (x+δ, 2π+x+δ],
then we get:

|f(t)− f(x)| ≤ 2||f ||2π ≤
2||f ||2π
sin2 δ

2

ψ(t) (3.4)

where ψ(t) = sin2
(
t−x

2

)
. From relations (3.3) and (3.4) for any fixed x ∈ I and for

any t we obtain:

|f(t)− f(x)| ≤ 2||f ||2π
sin2 δ

2

ψ(t) + ε. (3.5)

Respectively,

−ε− 2||f ||2π
sin2 δ

2

ψ(t) < f(t)− f(x) <
2||f ||2π
sin2 δ

2

ψ(t) + ε.

Applying the operator Tn(1, x) in this inequality we have:

Tk(1, x)

(
−ε− 2||f ||2π

sin2 δ
2

ψ(t)

)
< Tk(1, x) (f(t)− f(x)) < Tk(1, x)

(
2||f ||2π
sin2 δ

2

ψ(t) + ε

)
.

Value of x is fixed, which means that f(x) is a constant and above relation takes this
form:

−εTk(1, x)− 2||f ||2π
sin2 δ

2

Tk(ψ(t), x) < Tk(f, x)− f(x)Tk(1, x)

<
2||f ||2π
sin2 δ

2

Tk(ψ(t), x) + εTk(1, x). (3.6)

On the other hand

Tk(f, x)− f(x) = Tk(f, x)− f(x)Tk(1, x) + f(x)[Tk(1, x)− 1]. (3.7)

From relations (3.6) and (3.7) we have:

Tk(f, x)− f(x) <
2||f ||2π
sin2 δ

2

Tk(ψ(t), x) + εTk(1, x) + f(x)[Tk(1, x)− 1]. (3.8)
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Let us now estimate the following expression:

Tk(ψ(t), x) = Tk

(
sin2

(
t− x

2

)
, x

)
= Tk

(
1

2
(1− cos t cosx− sin t sinx), x

)
=

1

2
{Tk(1, x)− cosxTk(cos t, x)− sinxTk(sin t, x)}

=
1

2
{[Tk(1, x)− 1]−cosx[Tk(cos t, x)− cosx]−sinx[Tk(sin t, x)− sinx]} .

Now, from the last relation and (3.8), we obtain that

Tk(f, x)− f(x) <
2||f ||2π
sin2 δ

2

1

2

{
[Tk(1, x)− 1]− cosx[Tk(cos t, x)− cosx]

− sinx[Tk(sin t, x)− sinx]
}

+ εTk(1, x) + f(x)[Tk(1, x)− 1]

= ε+ ε[Tk(1, x)− 1] + f(x)[Tk(1, x)− 1] +
2||f ||2π
sin2 δ

2

1

2

{
[Tk(1, x)− 1]

− cosx[Tk(cos t, x)− cosx]− sinx[Tk(sin t, x)− sinx]
}
.

Therefore,

|Tk(f, x)− f(x)| ≤ ε+

(
ε+ |f(x)|+ 2||f ||2π

sin2 δ
2

)
|Tk(1, x)− 1|

+
2||f ||2π
sin2 δ

2

{
| cosx| · |Tk(cos t, x)− cosx|

+ | sinx| · |Tk(sin t, x)− sinx|
}

≤ ε+

(
ε+ |f(x)|+ 2||f ||2π

sin2 δ
2

)
|Tk(1, x)− 1|

+
2||f ||2π
sin2 δ

2

{
|Tk(cos t, x)− cosx|+ |Tk(sin t, x)− sinx|

}
.

Now taking the supx∈I in the above relation, we get:

||Tk(f, x)− f(x)||2π ≤ ε+K
(
||Tk(1, x)− 1||2π + ||Tk(cos t, x)− cosx||2π

+ ||Tk(sin t, x)− sinx||2π
)
,

where

K = max

{
ε+ ||f ||2π +

2||f ||2π
sin2 δ

2

,
2||f ||2π
sin2 δ

2

}
.

Now replacing Tk(., x) by

Λ2(., x) =
1

λn − λn−1

n∑
k=0

(λkTk(., x)− 2λk−1Tk−1(., x) + λk−2Tk−2(., x))
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in the above inequality on both sides. For a given r > 0, we can choose ε1 such that
ε1 < r. Now we will define the following sets:

D =
{
k ≤ N : ||Λ2(f, x)− f(x)||2π ≥ r

}
,

Di =
{
k ≤ N : ||Λ2(fi, x)− fi(x)||2π ≥

r − ε1

3K

}
, i = 0, 1, 2.

Then D ⊂ ∪2
i=0Di and for their densities is satisfied relation:

δ(D) ≤ δ(D0) + δ(D1) + δ(D2).

Finally, from relations (3.2) and the above estimation we get:

Λ2(st)- lim
n
||Λ2(f, x)− f(x)||2π = 0,

which completes the proof. �

Remark 3.5. If we take λn = n2, then our Theorem 3.4 reduce to Theorem 2.1 of [19].

4. Rate of Λ2− statistically convergence

In this section we will show the rate of the Λ2− statistical convergence of positive
linear operators in C2π(R) spaces.

Definition 4.1. Let (an) be any positive, nondecreasing sequence of positive numbers.
We say that sequence x = (xn) is Λ2− statistical convergent to number L with rate
of convergence o(an), if for every ε > 0,

lim
n

1

an
|{m ≤ n : |Tm − L| ≥ ε}| = 0.

In this case, we write xn − L = Λ2(st)− o(an).

Lemma 4.2. Let (an) and (bn) be two positive nondecreasing positive numeric se-
quences. Let x = (xn) and y = (yn) be two sequences such that xn−L1 = Λ2(st)−o(an)
and yn − L2 = Λ2(st)− o(bn). Then

1. α(xn − L) = Λ2(st)− o(an), for any scalar α.
2. (xn − L1)± (yn − L2) = Λ2(st)− o(cn).
3. (xn − L1)(yn − L2) = Λ2(st)− o(anbn),

where cn = max {an, bn}.

Now let us recall the notion of the modules of continuity. The modulus of con-
tinuity for function f(x) ∈ C2π(R), is defined as follows:

ω(f, δ) = sup
|h|<δ

|f(x+ h)− f(x)|.

It is known that, for any value of the |x− y|, we get:

|f(x)− f(y)| ≤ ω(f, δ)

(
|x− y|
δ

+ 1

)
. (4.1)
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We have the following result:

Theorem 4.3. Let (Tn) be a sequence of positive linear operators from C2π(R) into
C2π(R). Suppose that

1. ||Tn(1, x)− 1||2π = Λ2(st)− o(an).

2. ω(f, λk) = Λ2(st)− o(bn), where λn =
√
Tn(φx, x) and φx(y) = (y − x)2.

Then for all f ∈ C2π(R), we have:

||Tn(f, x)− f(x)||2π = Λ2(st)− o(cn),

where cn = max {an, bn}.

Proof. Let f ∈ C2π(R) and x ∈ [−π, π]. From relations (3.7) and (4.1) we get this
estimation:

|Tn(f, x)− f(x)| ≤ |Tn(|f(y)− f(x)|, x)|+ |f(x)| · |Tn(1, x)− 1|

≤ Tn
(
|x− y|
δ

+ 1, x

)
ω(f, δ) + |f(x)| · |Tn(1, x)− 1|

(by Cauchy-Schwartz inequality)

≤ 1

δ
(Tn((x− y)2, x))

1
2 (Tn(1, x))

1
2ω(f, δ) + |f(x)| · |Tn(1, x)− 1|.

If we are putting δ = λn =
√
Tn(φx, x) in the last relation we obtain:

||Tn(f, x)− f(x)||2π ≤ ||f ||2π||Tn(1, x)− 1||2π + 2ω(f, λn)

+ ω(f, λn)||Tn(1, x)− 1||2π + ω(f, λn)
√
||Tn(1, x)− 1||2π

≤ C
{
||Tn(1, x)− 1||2π + ω(f, λn) + ω(f, λn)||Tn(1, x)− 1||2π

+ ω(f, λn)
√
||Tn(1, x)− 1||2π

}
,

where C = max
{
||f ||2π, 2

}
. Now replacing Tk(., x) by

Λ2(., x) =
1

λn − λn−1

n∑
k=0

(λkTk(., x)− 2λk−1Tk−1(., x) + λk−2Tk−2(., x)),

we get

||Λ2(f, x)− f(x)||2π ≤ C
{
||Λ2(1, x)− 1||2π + ω(f, λn) + ω(f, λn)||Λ2(1, x)− 1||2π

+
√
ω(f, λn)||Λ2(1, x)− 1||2π

}
.

The proof follows from the conditions (1) and (2). �

In the following example we show that Theorem 3.4 is stronger than Theorem 3.3.

Example 4.4. For any n ∈ N we will denote by Sn(f) the n−th partial sum of the
Fourier series of f , i.e.,

Sn(f) =
a0

2
+

n∑
k=1

ak cos kx+ bk sin kx.
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Let us consider the following expression:

Λ2(f, x) =
1

λn − λn−1

n∑
k=0

(λk − 2λk−1 + λk−2)Sk(f).

We know that limn→∞ Λ2(f, x) = f (see [8]). Let us denote by Ln : C2π(R)→ C2π(R)
defined by:

Ln(f, x) = (1 + xn)Λ2(f, x)

where (xn) is defined as follow:

xn :=

{
1 (n odd)

−1 (n even).
(4.2)

After some calculations we have:

Λ2(1, x) = 1,

Λ2(cos t, x) = cosx,

Λ2(sin t, x) = sinx.

We see that conditions (3.2) are satisfied, and by Theorem 3.4, it follows that

Λ2(st)- lim
n
||Ln(f, x)− f ||2π = 0,

but Theorem 3.3 does’t hold.

Remark 4.5. Based in the previous example and Remark 3.5, we show that our Theo-
rem 3.4 is also stronger than Theorem 2.1 due to Mohiuddine and Alotaibi [19].
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